• 제목/요약/키워드: Saving energy rate

검색결과 325건 처리시간 0.021초

간접식 증발냉각장치의 성능예측과 에너지절약에 관한 연구 (Study on Performance Prediction and Energy Saving of Indirect Evaporative Cooling System)

  • 유성연;김태호;김명호
    • 대한기계학회논문집B
    • /
    • 제39권9호
    • /
    • pp.743-749
    • /
    • 2015
  • 본 연구의 목적은 간접식 증발냉각 장치의 성능을 예측하고, 장치를 공기조화기의 배기열 회수에 적용하였을 경우의 에너지 절약효과를 분석하는 것이다. 플라스틱 열교환기를 사용한 간접식 증발냉각장치의 성능 상관식을 여러가지 조건에서 얻어진 실험 데이터로부터 구하였으며, 이 상관식을 이용하여 환기와 외기의 조건을 변화시켜가면서 장치의 성능변화를 예측하였다. 또한 간접식 증발냉각장치의 배기열 회수에 의한 에너지 절약효과를 우리나라 몇개 도시의 표준기상데이터를 사용하여 분석하였다. 여름철 배기열 회수를 위한 현열냉각장치의 사용율은 평균 44.3%이며 증발냉각장치의 사용율은 96.7% 이다. 증발냉각장치의 배기열 회수에 의한 에너지 절약은 현열냉각장치에 비해서 훨씬 높으며, 서울의 경우 약 3.89 배로 나타났다.

Dynamically Alternating Power Saving Scheme for IEEE 802.16e Mobile Broadband Wireless Access Systems

  • Chang, Jau-Yang;Lin, Yu-Chen
    • Journal of Communications and Networks
    • /
    • 제14권2호
    • /
    • pp.179-187
    • /
    • 2012
  • Power saving is one of the most important features that extends the lifetime of portable devices in mobile wireless networks. The IEEE 802.16e mobile broadband wireless access system adopts a power saving mechanism with a binary truncated exponent algorithm for determining sleep intervals. When using this standard power saving scheme, there is often a delay before data packets are received at the mobile subscriber station (MSS). In order to extend the lifetime of a MSS, the battery energy must be used efficiently. This paper presents a dynamically alternating sleep interval scheduling algorithm as a solution to deal with the power consumption problem. We take into account different traffic classes and schedule a proper sequence of power saving classes. The window size of the sleep interval is calculated dynamically according to the packet arrival rate. We make a tradeoff between the power consumption and packet delay. The method achieves the goal of efficiently reducing the listening window size, which leads to increased power saving. The performance of our proposed scheme is compared to that of the standard power saving scheme. Simulation results demonstrate the superior performance of our power saving scheme and its ability to strike the appropriate performance balance between power saving and packet delay for a MSS in an IEEE 802.16e mobile broadband wireless access system.

An Energy Saving Scheme for Multilane-Based High-Speed Ethernet

  • Han, Kyeong-Eun;Yang, Choong-Reol;Kim, Kwangjoon;Kim, Sun-Me;Lee, Jonghyun
    • ETRI Journal
    • /
    • 제34권6호
    • /
    • pp.807-815
    • /
    • 2012
  • In this paper, we propose a scheme for partially dynamic lane control for energy saving in multilane-based high-speed Ethernet. In this scheme, among the given transmission lanes, at least one lane is always operating, and the remaining lanes are dynamically activated to alleviate the network performance in terms of queuing delay and packet loss in the range of acceptance. The number of active lanes is determined by the decision algorithm based on the information regarding traffic and queue status. The reconciliation sublayer adjusts the transmission lane with the updated number of lanes received from the algorithm, which guarantees no processing delay in the media access control layer, no overhead, and minimal delay of the exchanging control frames. The proposed scheme is simulated in terms of queuing delay, packet loss rate, lane changes, and energy saving using an OPNET simulator. Our results indicate that energy savings of around 55% (or, when the offered load is less than 0.25, a significant additional savings of up to 75%) can be obtained with a queuing delay of less than 1 ms, a packet loss of less than $10^{-4}$, and a control packet exchange time of less than $0.5{\mu}s$ in random traffic.

에너지 절약을 위해 적응적 버퍼링 기법을 이용한 버스트 구성 방법 및 특성 (Adaptive Buffer and Burst Scheme and Its Characteristics for Energy Saving in Core IP Networks)

  • 한치문
    • 전자공학회논문지
    • /
    • 제49권10호
    • /
    • pp.34-42
    • /
    • 2012
  • IP Network에서 에너지 절감에 기본이 되는 에너지 절약 power 모델에 대해 분석 하고, 에너지 절약이 가능한 한 가지 방안으로 적응적 버퍼링 기법을 적용한 버스트 패킷 구성(adaptive buffering and burst) 방식 및 그의 구현 알고리즘을 제안하고, 그 특징을 설명한다. 본 논문에서는 core IP 네트워크의 ingress router에서 buffering 기간 B를 입력 트래픽에 따라 동적으로 변경하는 적응적 버퍼링 방법과 구성 방법을 설명한다. 이 방법은 주어진 범위의 버퍼링 기간 내에서, ingress 라우터의 입력 트래픽 량이 적으면 버퍼링 주기를 길게, 입력 트래픽 량이 많으면 버퍼링 주기를 짧게 조절하는 방식이며, 이는 네트워크 내에서 입력 트래픽이 적을 때 idle/active의 transition 횟수를 줄이고, 입력 트래픽이 클 때는 중계 라우터에서 버스트의 연속성에 의해 idle/active의 transition 횟수를 줄여 네트워크의 idle 기간을 늘려 에너지 절약 효과를 높이고 있다. 본 방식은 시뮬레이션을 통해 idle period를 증가 시킬 수 있음을 보여 주고, 에너지를 절약 할 수 있음을 확인 한다. 특히 본 제안 방식은 네트워크 특성과 적절히 타협하면, 네트워크 에너지를 절약 할 수 있는 방안임을 분명히 한다.

가압식 바닥공조 시스템과 야간 외기냉방의 병용에 따른 에너지저감 성능에 관한 연구 (A Study on Energy Saving Performance by Night Purge Cooling with Pressurized Under Floor Air Distribution System)

  • 윤성훈
    • 한국태양에너지학회 논문집
    • /
    • 제40권1호
    • /
    • pp.25-33
    • /
    • 2020
  • It has been reported about the energy saving performance of UFAD(under floor air distribution) system and NPC(night purge cooling) system respectively which are applied for commercial buildings. However, when two systems are used at the same time, the effect of heat transfer from floor plenum to slab may vary depending on the operating conditions of NPC. In this study, cooling energy demands were analyzed for building models with UFAD and NPC by using TRNSYS 17 program. UFAD was applied as a cooling system of the base building model, and the cooling energy demands were compared for 64 cases in which the operating time, supply airflow rate, and outdoor air temperature(To) of NPC. As a result, it was confirmed that the cooling energy demands were reduced to 30 ~ 80% level compared to UFAD alone, and in particular, the energy demand was reduced in proportion to the supply airflow rate or the operating time while To was 16 ~ 20℃. However, when To was 22℃, the increase in the supply airflow rate or the operating time results in a disadvantage in terms of cooling energy demands. In addition, the cooling energy demands for UFAD+NPC model were analyzed by applying weather data from three regions with different average outdoor air temperatures. As a result, the cooling energy demand of operating NPC only when To was below 20℃ was reduced by 27% compared to that of operating NPC continuously for 8 hours.

Heating and Cooling Energy Conservation Effects by Green Roof Systems in Relation with Building Location, Usage and Number of Floors

  • Son, Hyeong Min;Park, Dong Yoon;Chang, Seong Ju
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.11-19
    • /
    • 2014
  • Building energy consumption takes up almost 25% of the total energy consumption. Therefore, diversified ways, such as improving wall and window insulation, have been considered to reduce building energy consumption. Recently, green roof system has been explored as an effective alternative for dealing with reducing heating and cooling energy, thermal island effect and improving water quality. However, recent studies regarding a green roof system have only focused on building energy reduction without considering the applied usage, location, and story of the green roof system. Therefore, this study pays attention to the heating and cooling energy in relation to the applied usage, location, and story of a green roof system for investigating its impact on energy reduction. The result of simulations show that the reduction in heating energy consumption is higher when applied to Cherwon-gun province which has a continental climate condition, compared to the city of Busan that is distinguished by its warm climate. Cooling energy saving turns out to be higher when the green roof system is applied to Busan in comparison with Cherwon. As for the applied usage or function of the building, residential space acquires the highest heating and cooling energy saving effect rather than commerce, educational or office space because of HVAC's running time based on usage. When it comes to the story of the green roof, both heating and cooling energy saving become the highest when the green roof is applied to single-storied buildings. The reason is that single story building is affected by the ground largely. Generally, the variations of heating energy consumption are larger than the cooling energy consumption. The outcome of the simulations, when a green roof system is applied, indicates that the energy consumption reduction rate is dynamically responding to the applied usage, location, and story. Therefore, these factors should be counted closely for maximizing the reduction of energy consumption through green roof systems.

CFD 모델을 이용한 열미로의 지중열원 활용에 관한 사례 연구 (Case Study on Application of Ground Heat Source in Thermal Labyrinth by CFD Model)

  • 민준기;남선영
    • 한국지열·수열에너지학회논문집
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2014
  • In order to evaluate the performance of ground heat source in thermal labyrinth on pre-heating in winter season and pre-cooling in summer season, the followings are made as a conclusion through case study of H project by using the weather data from Korea meteorological administration and CFD model. By making outdoor air inlet via ground heat source in thermal labyrinth for conduction, convection and etc., the temperature rise is $13.4^{\circ}C$as the effect of pre-heating in winter season. On the other hand, as the effect of pre-cooling in summer season, the temperature decrease is $7.2^{\circ}C$. The energy saving rate by the application of ground heat source in thermal labyrinth is 9.1%.

건물 외피의 열특성과 외주부 깊이에 따른 PAL에 관한 연구 (A study on the PAL according to thermal characteristic of building skin and perimeter zone depth)

  • 김지혜;김환용
    • 한국태양에너지학회 논문집
    • /
    • 제30권2호
    • /
    • pp.33-38
    • /
    • 2010
  • The perimeter zone is space which receives a significant effect of ambient condition, it is necessary to improve the thermal performance in order to building energy saving. For this reason, a lot of study about the active approach is being performed, such as perimeter-less air conditioning system. But the performance of the perimeter zone is necessary to improve, through the passive approach. Therefore, the purpose of this study is to provide basic materials of energy-saving design of perimeter zone, based of the PAL that simulation changing the thickness of insulation and the rate of windows.

기존 공동 주택의 벽체 열성능 현장 측정법에 관한 연구 (The study of in-situ measurement method for wall thermal performance diagnosis of existing apartment)

  • 김서훈;김종훈;류승환;정학근;송규동
    • KIEAE Journal
    • /
    • 제16권4호
    • /
    • pp.71-77
    • /
    • 2016
  • Purpose : The energy saving in a residential building (apartment) sector is known as one of the effective solution of energy reduction. In South Korea, the government has recently reinforced regulations associated with the energy performance of buildings. However, there is a lack of research on the methods for the energy performance diagnosis that is used to analyze the wall thermal performance of the existing apartments. Because a reliable diagnosis is necessary to save the building energy, this study analyzed wall thermal performance of an existing apartment in Seoul. Method : This paper applied two methods for analysis of the thermal insulation performance; HFM(Heat Flow Meter) method and ASTR(Air-Surface Temperature Ratio) method. The HFM method is suggested by ISO9869-1 code to measure the thermal performance. The ASTR method is proposed by this study for the simplified In-situ measurement and it uses three temperature data (interior wall surface, interior and exterior air) and the overall heat transfer coefficient. This study conducted the experiment of an existing apartment in Seoul using these methods and analyzed the results. Furthermore, the energy simulation tool of the building was used to suggest retrofit of the building based on the results of measurements. Result : The error rate of HFM method and ASTR method was analyzed in about 17 to 20%. As the results of comparison between the initial design values of the wall and the measured values, the 26% degradation of insulation thermal performance was measured. Lastly, the energy simulation tool of the building shows 10.8% energy savings in accordance with the construction of suggested retrofit.

지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가 (A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump)

  • 정영주;조재훈;김용식;조영흠
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.