• Title/Summary/Keyword: Saving energy rate

Search Result 325, Processing Time 0.032 seconds

The Strengthening Effect of the Heating and Cooling Load on the Thermal Performance in the Housing Unit (주택에서의 단열성능 강화가 냉난방부하에 미치는 영향)

  • Lee, Jun-Gi;Kim, Sung-Hoon;Lee, Gab-Taek;Lee, Kyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.483-488
    • /
    • 2016
  • In this study, we chose the rural house as a standard model. In order to review the energy difference of cooling and heating loads, we changed the thermal transmittance standards. By using the thermal transmittance standard in 2011 as the Basic CASE, the thermal transmittance standard in 2013 as well as 2016, and the thermal transmittance standard of passive houses, we compared the results with regard to the cooling and heating energy load. Because of the heat loss, it can be confirmed that with an improved thermal performance of the building structure, the maximum increase of the cooling energy load was 36 kWh from June to September. Because of the heat loss, it was also confirmed that with the improved thermal performance of a building structure, the maximum decrease of the heating energy load is 1,498 kWh from November to April. Even though the heat loss of the building structure could decrease the cooling energy load by improving thermal transmittance standards in Korea, the energy saving performance is worse than the situation of heating energy load in heating period. Compared with CASE 1 and CASE 2, as well as CASE 1 and CASE 3, we CASE 3 was found to have the best energy saving rate when compared to the other cases : CASE 3 increased by 1,452 kWh and CASE 2 by 588 kWh, because the window thermal transmittance standard of 2016 was added.

Predictive aeration control based on the respirometric method in a sequencing batch reactor (연속회분식반응조에서 호흡률에 기반한 포기공정의 예측제어)

  • Kim, Donghan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • As aeration is an energy-intensive process, its control has become more important to save energy and to meet strict effluent limits. In this study, predictive aeration control based on the respirometric method has been applied to the sequencing batch reactor (SBR) process. The variation of the respiration rate by nitrification was great and obvious, so it could be a very useful parameter for the predictive aeration control. The maximum respiration rate due to nitrification was about 60 mg O2/L·h and the maximum specific nitrification rate was about 7.5 mg N/g MLVSS·h. The aeration time of the following cycle of the SBR was daily adjusted in proportion to that which was previously determined based on the sudden decrease of respiration rate at the end of nitrification in the respirometer. The aeration time required for nitrification could be effectively predicted and it was closely related to influent nitrogen loadings. By the predictive aeration control the aerobic period of the SBR has been optimized, and energy saving and enhanced nitrogen removal could be obtained.

A Study on the Building Energy Analysis and Algorithm of Energy Management System (건물 에너지 분석 및 에너지 관리 시스템 알고리즘에 관한 연구)

  • Han, Byung-Jo;Park, Ki-Kwang;Koo, Kyung-Wan;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.505-510
    • /
    • 2009
  • In this paper, building energy analysis and energy cost of power stand up and demand control over the power proposed to reduce power demand. Through analysis of the load power demand special day were able to apply the pattern. In addition, the existing rate of change of load forecasting to reduce the large errors were not previously available data. And daily schedules and special day for considering the exponential smoothing methods were used. Previous year's special day and the previous day due to the uncertainty of the load and the model components were considered. The maximum demand power control simulation using the fuzzy control of power does not exceed the contract. Through simulation, the benefits of the proposed energy-saving techniques were demonstrated.

Field Tests of DC 1500 V Stationary Energy Storage System

  • Lee, Hanmin;Kim, Gildong;Lee, Changmu;Joung, Euijin
    • International Journal of Railway
    • /
    • v.5 no.3
    • /
    • pp.124-128
    • /
    • 2012
  • The ESS(energy storage system, here after) for a DC 1500V was developed in 2009. A ESS was installed on the track of Daejeon HRT in 2010. The advantage of the ESS is that it can save the energy and plus stable the catenary voltage. This paper presents the energy saved by the ESS in Daedong substation. When the ESS is on/off, the field tests are performed.

The Study of Economical Efficiency for the Ice Storage System of more Energy Consumption Building (에너지 다소비형 건물 축냉 시스템의 경제성에 관한 연구)

  • Lee, Je-Myo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.733-738
    • /
    • 2012
  • It is important issue to reduce the electric energy to save the operating cost of HVAC system. Even if electrical energy is the clean energy, it is difficult and takes high cost for storage of electricity. These cause the high peak load of electric energy for HVAC in summer season. In korea, government impose the electric charge with several grade for the purpose of cut-off the peak load of electricity. Government has a policy to support to design and install the heat/ice storage system using midnight electricity. In this study, analysis of cooling load and operating characteristics for ice storage system are performed. And, also economical efficiency is compared between ordinary charge system of electricity and midnight rate charge of electricity. The systematic and economical supports are needed for expansion of usage of energy saving equipments.

The Properties of Concrete with Lightweight Aggregate Impregnated by Phase Change Material (상변화물질 함침 경량골재를 사용한 콘크리트의 특성)

  • Kim, Se-Hwan;Jeon, Hyun-Kyu;Hwang, In-Dong;Seo, Chee-Ho;Kim, Sang-Heon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.331-338
    • /
    • 2013
  • Under the paradigm of sustainable green growth at the national level, various researches and applications for energy saving in the construction field has been attempted. As a part of energy saving efforts, lightweight concrete was investigated for thermal insulation concrete with phase change material (PCM) which has high heat storage capacity. As a part of energy saving efforts, thermal insulation concrete was investigated and evaluated with lightweight aggregate impregnated by PCM which has high heat storage capacity. As a result, it is found that concrete with lightweight aggregate impregnated by PCM is effective to prevent its quality deterioration by reducing water absorption rate of lightweight aggregate. In addition, it has shown that concretes using lightweight aggregate and impregnated lightweight aggregate improve heat insulation property 33% and 40~43% compared with using normal aggregate, respectively. It is that the lightweight aggregate concrete with impregnated lightweight aggregate has 12~14% lower thermal conductivity than unimpregnated.

Classification Index and Grade Levels for Energy Efficiency Classification of Agricultural Heaters in Korea

  • Shin, Chang Seop;Jang, Ji Hoon;Kim, Young Tae;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.264-269
    • /
    • 2013
  • Purpose: This study was carried out to develop a classification index and grade levels to rate agricultural heaters for energy efficiency classification. Methods: The classification index was developed mainly by taking simplicity of calculation and easy access to relevant data into consideration. The grade levels were developed on the basis of a 5-grade classification system in which graded heaters are to be normally distributed over the grades. The value of each grade level were determined in terms of the classification index values calculated using the published performance data of agricultural heaters tested at the FACT in Korea over the past 12 years. Results: The thermal efficiency of agricultural heaters based on the enthalpy method was proposed as a reasonable classification index. The grade levels were proposed in equation form for three types of agricultural heaters: fossil fuel heaters, wood pellet heaters and wood pellet boilers. A reasonable energy efficiency classification of agricultural heaters could be performed using the proposed classification index and grade levels. Conclusions: It is expected that energy saving programs will be extended to agricultural machines in the near future. The classification index and grade levels to rate agricultural heaters for energy efficiency classification were developed and proposed for such near future to come.

A Study on Simulator for Computing Demand Rate Considering a Transformer Capacity (변압기 용량을 고려한 수용률 산출 시뮬레이터 개발에 관한 연구)

  • Kim, Young-Il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.179-185
    • /
    • 2007
  • In this paper, the method of computing demand rate with respect to a transformer capacity is proposed and addressed to predict a future demand rate. The simulation data are taken from switchgears of a real medium voltage transformer. Data taken from the electrical instrument at 22.9 kVY power receiving panels are employed to evaluate the correlation between demand rate and power usage of transformer. It is verified a usefulness with respect to an proposed index of demand rate for transformer by using a least square error of regressive modeling, As a result of investigation and simulation on the spot to a few buildings, it is considered that there is necessity to make a partial amendment of demand rate being applicable currently for electrical energy saving in domestic.

Study in the Mixed Cooling Dryer Experiment (복합형 냉풍건조기 실험에 대한 검토)

  • Choi, Jin-Young;Kim, Se-Hwan;Park, Seung-Tae;Lee, Jong-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.254-259
    • /
    • 2009
  • The mixed cooling dryer has been developed significantly by adopting both advantages of cooling dryers and desiccant dryers. In this study, it is introduced that the desired effect, such as drying rate period reduction and energy-saving, could be achieved only by adding the desiccant dryer if an existing cooling dryer is used. The experiment should be conducted for quite long time due to the material selection, so it is regrettable that there are not enough data.

  • PDF

A Study on Energy Usage Monitoring and Saving Method in the Sewage Treatment Plant (공공하수처리시설에서 에너지 사용현황 및 절감방안 연구)

  • Kim, Jongrack;Rhee, Gahee;You, Kwangtae;Kim, Dongyoun;Lee, Hosik
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.535-545
    • /
    • 2020
  • This study aims to conserve and monitor energy use in public sewage treatment plants by utilizing data from the SCADA system and by controlling the aeration rate required for maintaining effluent water quality. Power consumption in the sewage treatment process was predicted using the equipment's uptime, efficiency, and inherent power consumption. The predicted energy consumption was calibrated by measured data. Additionally, energy efficiency indicators were proposed based on statistical data for energy use, capacity, and effluent quality. In one case study, a sewage treatment plant operated via the SBR process used ~30% of energy consumed in maintaining the bioreactors and treated water tanks (included decanting pump and cleaning systems). Energy consumption analysis with the K-ECO Tool-kit was conducted for unit processing. The results showed that about 58.7% of total energy consumed was used in the preliminary and biological treatment rotating equipment such as the blower and pump. In addition, the energy consumption rate was higher to the order of 19.2% in the phosphorus removal process, 16.0% during sludge treatment, and 6.1% during disinfection and discharge. In terms of equipment energy usage, feeding and decanting pumps accounted for 40% of total energy consumed following 27% for blowers. By controlling the aeration rate based on the proposed feedback control system, the DO concentration was reduced by 56% compared pre-controls and the aeration amount decreased by 28%. The overall power consumption of the plant was reduced by 6% via aeration control.