• Title/Summary/Keyword: Saturator

Search Result 16, Processing Time 0.024 seconds

An Effect of the Micro Bubble Formation Depending on the Saturator and the Nozzle in the Dissolved Air Flotation System (DAF 공정에서 공기포화장치와 노즐 특성 별 미세기포 발생에 미치는 영향)

  • Park, S.C.;Oh, H.Y.;Chung, M.K.;Song, S.L.;Ahn, Y.H.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.929-936
    • /
    • 2013
  • The saturator and injection nozzle are important facilities on the dissolved air flotation process. To increase the formation of micro bubble, it is required to improve the air dissolving performance in the saturator and keep the pressure uniform from the saturator to the nozzle. This study aimed to evaluate the performance of the saturator and the hydraulic effect of the nozzle and the pipe structure. The air volume concentration, bubble size and bubble residual time were measured in the test. The saturator, which had mounted with the spray nozzle, showed a good performance for bubble formation. Also, the characteristics of micro bubble formation were influenced by pressure uniformity and flow velocity through the orifice in the nozzle.

Development of a divided-flow humidity generator and its use for studying low-temperature effects on radiosonde humidity sensors (분류식 습도 발생 장치 개발 및 라디오존데 습도센서 저온 효과 보정에 활용 연구)

  • Jang, Eun-Jeong;Lee, Young-Suk;Choi, Byung-Il;Choi, Yoonseuk;Lee, Sang-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.243-249
    • /
    • 2021
  • Humidity is an important physical quantity that is closely related with the quality of everyday life as well as the quality control of products in various industries. Here, we have developed a divided-flow type humidity generator of which humidity generation is faster than the saturator-based humidity generator in ppm level. The operation principle of the divided-flow humidity generator is first introduced. Then, the performance of the divided-flow humidity generator is verified by testing the radiosonde humidity sensor at low temperature. As a result, the humidity generated from the divided-flow humidity generator is consistent with the saturator-based precision humidity generator within 1.6% relative humidity in the range from 10% to 40% at -45 ℃. It is also found that the radiosonde humidity sensor shows measurement errors by 3% - 5% at -45 ℃ when it is only calibrated at room temperature. The response times of radiosonde humidity sensor using the divided-flow humidity generator are between about 2 and 9 minutes, whereas those by the saturator-based humidity generator are about 20 minutes. In this regard, the divided-flow humidity generator has a merit in terms of fast humidity changes for the calibration of radiosonde humidity sensors at low-temperatures.

Evaluation of Flotation Efficiency and Particle Separation Characteristics of Carbon Dioxide Bubbles using Collision Efficiency Model (단일포집자충돌(SCC) 모델을 이용한 이산화탄소기포의 입자분리특성과 부상효율 평가)

  • Lee, Jun-Young;Kim, Seong-Jin;Yoo, Young-Hoon;Chung, Paul-Gene;Kwon, Young-Ho;Park, Yang-Kyun;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.129-136
    • /
    • 2012
  • In this century, scientists realized that carbon dioxide gas in the atmosphere cause a greenhouse effect which affects the planet's temperature. Therefore lots of attempts have carried out to decrease the discharge of carbon dioxide gas in the field. The dissolved carbon dioxide flotation (DCF) process was developed as an alternative of DAF process to decrease the discharge and reuse of carbon dioxide as well as to save energy consumption. To investigate the particle separation characteristics and the flotation efficiency of carbon dioxide, SCC model was employed in the DCF process which has been applied extensively for the evaluation and simulation in the DAF process. The simulation results by the SCC model revealed the predicted curve of flotation efficiency became decreased gradually over the optimal pressure range of saturator about 1.6 atm in accordance with the experiment results of the DCF pilot plant and the size distribution and the bubble volume concentration of $CO_{2}$ bubbles depending on the operation pressure of saturator. The findings through the simulation results led to the conclusion that there was no significant difference between $CO_{2}$ bubbles and air bubbles, affecting on the practical flotation efficiency, in terms of the initial collision and attachment efficiency.

Analysis of the operating factors of dissolved air flotation (DAF) process for effluent quality improvement from aquaculture rearing tank (양식장 배출수 수질관리를 위한 용존공기부상 공법의 운전 인자 영향 분석)

  • Ki, Jae-Hong;Kim, Hyoung-Jun;Lee, Ju-Young;Han, Moo-Young;Gang, Hee-Woong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Pollutants in aquaculture system effluent mostly originated from solid wastes including uneaten feed and excreta of cultured species. In this research, DAF(Dissolved Air Flotation) unit is suggested as an integrated solid control unit especially as a form of IIBG(Inline Injection Bubble Generation) process in aquaculture system. Solid removal performance of DAF unit was examined under various operation and salinity conditions with turbidity and suspended solid. Solid waste removal efficiencies were found to be affected by operation conditions including saturator pressure, recycle ratio, coagulant concentration. Solid removal efficiency was higher under higher saturator pressure and recycle ratio under which condition larger number of bubbles is generated. Coagulant is thought to have important role in creating bubble-particle aggregate by showing better removal efficiency with higher concentration. However higher saline water showed less effectiveness in removing solids by DAF(IIBG). Application of DAF(IIBG) process also showed additional effect in phosphate removal and DO(Dissolved Oxygen) supply. Phosphate existed in polluted water was removed up to 46% after treatment, which is thought to attribute to aluminium phosphate precipitation. And DO concentration was found to increase over 50% of initial saturation concentration after the injection of micro-bubbles. Through experiments on solid removal from aquaculture effluent, DAF(IIBG) process is estimated to be effective solid control method. This property can help aquaculture system being installed and operated simply and effectively.

Repair and Retrofit System of Concrete Structures using Fiber Glass and Epoxy Composite Sheets, Improved Through Utilization of Silica fume and Mechanical Saturator (실리카흄과 현장기계함침을 이용한 유리섬유 복합재(CAF)의 콘크리트 구조물 보수보강공법)

  • 유용하;권성준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.785-792
    • /
    • 2000
  • Repair and retrofit system of concrete structures has been developed from conventional reinforced concrete overlaying, steel plate bonding and recently to fiber composite systems. Research and study on carbon, aramid, and glass fiber composite system has been actively carried out from all over the world Glass fiber composite is proved to be competitive technically and enconomically, among fiber composite system. CAF system is a system developed locally using all domestic materal, glass fabric and epoxy, and improved in shear bonding property by utilizing silica fume mixed with epoxy. All the tests on material properties, structural behavior, constructiveness at site and quality control procedure proved to be most appropriate system so far developed. Futher research work is and will be under progress for utilization of this system which will be applied to more adverse situation.

  • PDF

Experiments on a Visual Servoing Approach using Disturbance Observer (외란 관측기를 이용한 시각구동 방법의 구현)

  • Lee, Joon-Soo;Suh, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1311-1316
    • /
    • 1999
  • A visual servoing method has been proposed based on disturbance observer to eliminate the effect of the off-diagonal component of image feature Jacobian, since performance indices such as measurement sensitivity of visual features, sensitivity of the control to noise and controllability could be improved when an image feature Jacobian was given as a block diagonal matrix. In this paper, experimental results of disturbance observer-based visual servoing are discussed where Samsung FARAMAN-AS1 6-axis industrial robot manipulator is employed. Also, the feature saturator is proposed to stabilize the disturbance observer loop by saturating the differential changes of the image features.

  • PDF

Experiments on a Visual Servoing Approach using Disturbance Observer (외란관측기를 이용한 시각구동 방법의 구현)

  • Lee, Joon-Soo;Suh, Il-Hong;You, Bum-Jae;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3077-3079
    • /
    • 1999
  • A visual servoing method has been proposed based on disturbance observer to eliminate the effect of the off-diagonal component of image feature Jacobian, since performance indices such as measurement sensitivity of visual features, sensitivity of the control to noise and controllability could be improved when an image feature Jacobian was given as a block diagonal matrix. In this paper, experimental results of disturbance observer-based visual servoing are discussed where Samsung FARAMAN-ASl 6-axis industrial robot manipulator is employed. Also, the feature saturator is proposed to stabilized the disturbance observer loop by saturating the differential changes of the image features.

  • PDF

Performance Improvement of Active Queue Management for Internet Routers

  • Lim, Hyuk;Park, Kyung-Joon;Park, Eun-Chan;Park, Chong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.1-77
    • /
    • 2001
  • In this paper, we propose a control scheme for improving the performance of a conventional Proportional-Integral (PI) controller for Active Queue Management (AQM) supporting TCP flows. When the PI controller is used for AQM, the windup phenomenon of the integral action causes the performance degradation. Therefore we model AQM as a system with a saturator and apply anti-windup methods to the PI controller for AQM. We compare the performances of anti-windup algorithm with the conventional PI controller through ns simulations. The simulation results show that the PI controller with anti-windup method performs better than the conventional PI controller.

  • PDF

Comparison of Dissolved Air and Micro-Bubble Concentration by a Micro-Bubble Generating Pump (미세기포 발생 펌프에서 생성되는 기포농도와 용존공기농도의 비교)

  • Lee, Chang-Han;Ahn, Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1835-1842
    • /
    • 2014
  • The goal of this study was to evaluate micro-bubble concentration ($C_{air}$) in water by air/water ratio (A/W ratio) with a micro-bubble generating pump. The estimation of micro-bubble concentration is based on the balance of inlet/outlet air and water flow rate. On net A/W ratio to be generated micro-bubble, we found that the obtained the $C_{air}$ are shown as a function of discharge pressure ($P_g$) of the micro-bubble generating pump. The correlation of the $C_{air}$ and the $P_g$ ($C_{air}=3.261P_g-1.754$) was adequately described by the least square methods with a high correlation coefficient (r = 0.9459) and calculated values fit the experimental data quite well. The $C_{air}$ was lower than theoretical dissolved air concentration ($C_{aq}$) calculated by Henry's law. The $C_{air}$ for being operated the micro-bubble generating pump was 6.75 - 39.53 mL/L, however, we found that the optimum of the $C_{air}$ to generate micro-bubble was the range from 10 to 12 mL/L.

Characteristics of Aerosol Particle Concentration by the Versatile Aerosol Concentration Enrichment System (VACES) (VACES을 이용한 대기 중 입자상물질의 농축기술 및 특성 연구)

  • Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1339-1348
    • /
    • 2012
  • The versatile aerosol concentration enrichment system (VACES) have proven useful for providing elevated levels of atmospheric aerosol to human and animal exposures. In this study, we describe a VACES and tests conducted to both optimize the enhancement factor (EF) and characterize how it depends on experiment conditions. Particle number concentrations were measured from upstream and downstream of the system by scanning mobility particle sizer (SMPS) with a long differential mobility analyzer (DMA) in combination with a condensation particle counter (CPC). SMPS was used for to determine VACES particle EF. Particle EF tends to increase for higher the saturator temperature ($T_{Sat}$) and lower the condenser temperature ($T_{Con}$). $T_{Con}$ higher than $0^{\circ}C$ and $T_{Sat}$ lower than $50^{\circ}C$ was the best to obtain the most increase in particle concentration. Correlation analysis of EF with factor variables of $T_{Sat}$ and $T_{Con}$ resulted in correlation 0.662 and 0.416, respectively. With all five predictor variables included in a multiple regression model, the EF had a liner correlation with $R^2=0.643$.