• Title/Summary/Keyword: Saturation-paste Extract

Search Result 6, Processing Time 0.019 seconds

Discussion on Dilution Factor for Electrical Conductivity Measured by Saturation-paste Extract and 1:5 Soil to Water Extract, and CEC of Korean Soils (한국 토양에 대한 포화침출액법과 1:5 법에 의한 전기전도도 간의 희석배수와 CEC의 관계에 대한 고찰)

  • Jung, Yeong-Sang;Joo, Jin-Ho;Hong, Sun-Dal;Lee, In-Bog;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.71-75
    • /
    • 2001
  • Linear regression analyses between the electrical conductivity of the saturation-paste extract. ECe, and the electrical conductivity of the 1:5 soil extract, EC1:5, for different soils yielded different dilution factors, or slopes with significant $r^2$ values from 0.842 to 0.905. The dilution factor was inversely proportional to the cation exchange capacity of soil which reflected textural difference. The dilution factors recommended for different textural classes ranged from 6.44 for clay soil to 12.29 for sandy soil based on the CEC's of the textural classes among 350 surface soils recorded in the Taxonomical Classification of Korean Soils except volcanic ash derived soils. Though saturation percentage of the saturation-paste of the soils in this study, CEC should be taken into account for dilution factor between ECe and EC1:5, and the suggested dilution factors might be reasonable estimate for the soil textural classes.

  • PDF

The Comparison of Electrical Conductivity for Soil Solutions Extracted in Field Capacity and Saturation-Paste (포장용수량과 포화 반죽 토양용액의 전기전도도 비교)

  • Lee, Ye-Jin;Lee, Jong-Sik;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.776-781
    • /
    • 2010
  • Estimating the electrical conductivity of the saturation-paste (SP) is a common method to assess soil salinity. To assess soil salinity realistically, it is important to extract soil solution under field capacity. However, few studies on salinity assessment have been conducted for soil solution extracted under field capacity (-33 kPa; FC) moisture condition due to difficulty in soil solution extraction. This study was conducted to evaluate whether saturation-paste can represent field condition. Soil solutions were extracted from 22 soils in the plastic film house (PFH) and 18 soils in the reclaimed land (RL) at saturation and field capacity moisture conditions. Those were analyzed for pH, EC, cations ($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) and anions ($Cl^-$, ${NO_3}^-$, ${PO_4}^{3-}$, ${SO_4}^{2-}$). Both cations and anions of soil solution extracted from FC showed high correlations with ions extracted from SP in the PFH and the RL, except for ${NO_3}^-$, ${PO_4}^{3-}$ in the RL. Results of the t-test, the ECe and $EC_{FC}$ were not significant at significance level 0.05. The slopes of the equations between $EC_{FC}$ and ECe at more than sand 50% soils were higher than less than sand 50% soils, and differences of saturation percentage between SP and FC showed larger as increasing sand percentage. EC was related to soil water retention by soil texture. To determine the EC, soil texture and other soil properties which effect the soil moisture should be considered.

Estimation of Conversion Factors for Electrical Conductivities Measured by Saturation-Paste and 1:5 Water Extraction (포화 및 1:5 추출법으로 측정한 토양 염도간의 환산 계수 추정)

  • Lee, Seung-Heon;Hong, Byeong-Deok;An, Yeul;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.193-199
    • /
    • 2003
  • Electrical conductivity (EC) is a major indicator of soil salinity. Measurement of EC in saturation-paste extract of soil (ECe) is a standard way to evaluate soil salinity. However, many of the data on soil salinity have been obtained by measuring the EC of 1:5 soil-water extract (EC1:5) or salt percentage which is calculated from EC1:5 by multiplying a conversion factor. We analyzed 90 soil samples collected from 9 reclaimed tidelands in Korea, and derived relationships between ECe and dilution factors (DF1:5) which can convert EC1:5 to ECe in 2 soil textural groups at 5 salinity levels. Regression equations between ECe and DF1:5 were DF1:5 = 1.3624In(ECe) + 5.1386($r^2=0.37^{***}$) for soils of more than 50% silt content, DF1:5 = 1.9505In(ECe) + 5.3679($r^2=0.66^{***}$) for soils of less than 50% silt content. And the relationship for all soils investigated was DF1:5 = 1.4001In(ECe) + 5.4865($r^2=0.51^{***}$). From the relationships, conversion factors for calculation of ECe from EC1:5 of salt percentage data were estimated for soils of different textures and salinity levels.

Estimating Saturation-paste Electrical Conductivities of Rose-cultivated Soils from their Diluted Soil Extracts (절화장미 재배토양에서 희석된 토양 침출용액으로부터 포화반죽 전기전도도 추정)

  • Lee, In-Bog;Ro, Hee-Myong;Lim, Jae-Hyun;Yiem, Myoung-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.398-404
    • /
    • 2000
  • We examined the effect of soil:water ratio on the equivalent concentration of individual electrolyte species and the electrical conductivities (EC) of the diluted extracts of 24 soil samples (loam or silt loam) collected from rose-cultivated plastic houses to estimate the EC of saturated soil-paste extracts (ECe) from diluted soil extracts. With increasing volume ratio of water (higher dilution), the equivalent concentrations of each electrolyte species and their sum increased. The relative contribution to the EC, however, was highest for $NO_3{^-}$, irrespective of soil:water ratio. The measured ECe was 6.36 for loam and $8.09dS\;m^{-1}$ for silt loam soils and the corresponding soil:water ratio was 0.38 and 0.50, respectively. The EC_e estimated from the EC of diluted extracts at 1:1, 1:2, or 1:5 soil:water ratios using their corresponding uniform diluted factors was lower than the measured EC_e and this difference was greater with higher dilution and EC values. Therefore, the alternative diluted factors (y) for each soil: water ratio were obtained following the definition of diluted factor and were correlated significantly with volume ratios of added water (x): y=1.55x+0.5 for loam and y=1.21x+0.48 for silt loam soils. On the other hand, correlation analyses of the EC of soil extracts (y) to the volume ratio of added water (x) on log-log scale yielded linear models: logy = -0.805logx + logb, SD of slope=0.05, b=sample specific constant, n=24). With known saturation percentage of a sample representing a group and and the EC of diluted extract of a given soil, the EC_e could be predicted using the proposed logarithmic equation.

  • PDF

Estimation of Dilution Factor between Two Soil Salinity Analysis Methods (두 가지 토양 염도 측정법간의 환산계수 추정)

  • Lee, Seung-Heon;Hong, Byeong-Deok;An, Yeul
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.405-408
    • /
    • 2002
  • The electrical conductivity, EC is a major indicator of soil salinity. Measuring EC of saturation-paste extract of soil, ECe, is the standard way to evaluate soil salinity. However much of the data on soil salinity have been obtained by measuring the EC of the 1:5 soil-to-water extract, EC(1:5) or salts contents(%) which multiplied by conversion factor. And, thus we attempted to collect and analysis 90 soil samples at 9 reclaimed tidelands in Korea and to derive a relationship between ECe and dilution factor at ECe and EC(1:5), $DF_{1:5}$ of 3 soil textural conditions and 6 salinity conditions. Regression equations between ECe and $DF_{1:5}$ were obtained $ECe=1.4701ln(DF_{1:5})+5.0974(r^2=0.97^{**})$ in case of more than 50% silt contents, $ECe=2.1399ln(DF_{1:5})+5.3462 (r^2=0.99^{***})$ in case of below 50% silt contents, and $ECe=1.5927ln(DF_{1:5})+5.2486 (r^2=0.98^{***})$ in all cases, and then we suggested the $DF_{1:5}\;and\;DF_%$ of 3 soil textural conditions and 6 salinity conditions.

  • PDF

Relation between Growth Condition of Six Upland-Crops and Soil Salinity in Reclaimed Land (간척지에서 토양 염류와 6개 밭작물 생육과의 관계)

  • Lee, Seung-Heon;Hong, Byeong-Deok;An, Yeoul;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.2
    • /
    • pp.66-71
    • /
    • 2003
  • This study was carried out to obtain basic data for selecting the applicable crops in reclaimed land and to provide guidelines for the rotation between paddy and upland cropping. Field experiment was conducted with six summer crops(garland chrysanthemum, young radish, small radish, kale, lettuce, red lettuce) at Dae-Ho reclaimed experiment plots in Dangjin province. Dry weights and plant heights of harvested crops were measured and soil chemical properties were analyzed. Plant height and dry weight decreased significantly with increasing soil saturation paste extract electrical conductivity(ECe) and sodium adsorption ratio(SAR). The threshold ECe of salt inhibition for six crops was less than $1dS\;m^{-1}$ for young radish and kale, greater than $4dS\;m^{-1}$ for garland chrysanthemum, and greater than $6dS\;m^{-1}$ for small radish, lettuce, and red lettuce. At higher ECe that inhibits crop growth, with every increase in $1dS\;m^{-1}$, dry weight index decreased by 3.35 for kale, 3.92 for small radish, 3.98 for young radish, 4.66 for lettuce, 7.57 for garland chrysanthemum, and 8.45% for red lettuce, respectively. The ECe causing 50% reduction of dry weight index was $18.9dS\;m^{-1}$ for small radish, $17.3dS\;m^{-1}$ for lettuce, $15.4dS\;m^{-1}$ for kale, $12.0dS\;m^{-1}$ for red lettuce, $11.3dS\;m^{-1}$ for young radish, and $11.0dS\;m^{-1}$ for garland chrysanthemum. Among the tested 6 summer crops through field experiment and in-situ survey, kale was proved to be a favorable vegetable crop at reclaimed tidal land.