• 제목/요약/키워드: Saturation Model

검색결과 763건 처리시간 0.022초

Saturation Prediction for Crowdsensing Based Smart Parking System

  • Kim, Mihui;Yun, Junhyeok
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1335-1349
    • /
    • 2019
  • Crowdsensing technologies can improve the efficiency of smart parking system in comparison with present sensor based smart parking system because of low install price and no restriction caused by sensor installation. A lot of sensing data is necessary to predict parking lot saturation in real-time. However in real world, it is hard to reach the required number of sensing data. In this paper, we model a saturation predication combining a time-based prediction model and a sensing data-based prediction model. The time-based model predicts saturation in aspects of parking lot location and time. The sensing data-based model predicts the degree of saturation of the parking lot with high accuracy based on the degree of saturation predicted from the first model, the saturation information in the sensing data, and the number of parking spaces in the sensing data. We perform prediction model learning with real sensing data gathered from a specific parking lot. We also evaluate the performance of the predictive model and show its efficiency and feasibility.

상호 포화를 포함한 자기저항 동기 전동기의 자속 포화 모델에 대한 정지 상태 추정 기법 (Standstill Identification of Magnetic Flux Saturation Model Including Cross-Saturation for Synchronous Motors)

  • 우태겸;박상우;최승철;윤영두;이학준;홍찬욱;이정준
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.364-371
    • /
    • 2021
  • A magnetic flux saturation model of Synchronous Reluctance Motors (SynRMs) and a parameter estimation method are proposed at standstill. The proposed magnetic flux model includes the nonlinear relationship between the current and the magnetic flux for self-saturation and cross-saturation. Voltage is injected at standstill to estimate the magnetic flux saturation model. Voltages are injected into the d-axis and q-axis to obtain data on self-saturation. Subsequently, voltages are simultaneously injected into the d-q axis to obtain data on cross-saturation. On the basis of the measured current and the calculated magnetic flux, the parameters of the proposed model are estimated using the least square method (LSM). Simulation and experiment were performed on a 1.5-kW SynRM to verify the proposed method. The proposed model can be used to create a high-efficiency operation table, a sensorless algorithm, and a current controller to improve the control performance of a motor.

열상장비의 포화 현상에 대한 시스템 모델링 (System-Level Saturation Modeling of Thermal Imager)

  • 한승오;박승만
    • 한국군사과학기술학회지
    • /
    • 제19권6호
    • /
    • pp.698-702
    • /
    • 2016
  • Thermal imager is now regarded as one of the key observation devices for ISR activities and getting important more and more. As other detectors, however, the thermal detectors also have maximum input and therefore they will be saturated if the input IR energy exceeds the allowed range. The saturation in the thermal detector makes it impossible to distinguish the target from background, as a result, the thermal imager does not perform its own mission anymore. In order to get an insight related with the image saturation, this paper develops a saturation model for a thermal imaging system, not a thermal detector. The proposed modeling starts from analyzing the specification of a thermal imager. Coupled with the characteristic parameters of the object, the saturation model can be used to predict the distance on which the detector is saturated. The proposed saturation model prove its validity by applying it for the case of observing a flash-bang.

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

Si 태양전지(太陽電池)의 표면재결합(表面再結合) 전류(電流)가 포화전류(飽和電流)에 미치는 영향(影響) (The Effect of Surface Recombination Current on the Saturation Current in Si Solar Cell)

  • 신기식;이기선;최병호
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.12-18
    • /
    • 1988
  • The effect of surface recombination current density on the saturation current density in Si solar cell has been studied. Theoretical model for surface recombination current was set up from emitter transparent model of M.A. Shibib, and saturation current of Si solar cell made by ion implantation method was also measured by digital electrometer. The theoretical surface recombination current density which is the same as saturation surface recombination current density in Shibib model was $10^{-11}[A/cm^2]$ and the measured value was ranged from $8{\times}10^{-10}$ to $2{\times}10^{-9}[A/cm^2]$. Comparing with the ideal p-n junction of Shockley, transparent emitter model shows improved result by $10^2$ order of saturation current density. But there still exists $10^2$ order of difference of saturation current density between theoretical and actual values, which are assumed to be caused by 1) leakage current through solar cell edge, 2) recombination of carriers in the depletion layer, 3) the series resistance effect and 4) the tunneling of carriers between states in the band gap.

  • PDF

Ammonia Removal Model Based on the Equilibrium and Mass Transfer Principles

  • Yoon, Hyein;Lim, Ji-Hye;Chung, Hyung-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.555-561
    • /
    • 2008
  • In air stripping of ammonia from the aqueous solution, a new removal model was presented considering the equilibrium principles for the ammonia in aqueous solution and between the aqueous and air phase. The effects of pH, temperature and airflow rate on the ammonia removal were evaluated with the model. In addition, the saturation degree of ammonia in air was defined and used to evaluate the effect of each experimental factor on the removal rate. As pH (8.9 to 11.9) or temperature (20 to 50 oC) was increased, the overall removal rate constants in all cases were appeared to be increased. Our presented model shows that the degrees of saturation were about the same (0.45) in all cases when the airflow condition remains the same. This result indicates that the effect of pH and temperature were directly taken into consideration in the model equation. As the airflow increases, the overall removal rate constants were increased in all cases as expected. However, the saturation degree was exponentially decreased with increasing the airflow rate in the air phase (or above-surface) aeration. In the subsurface aeration the saturation degree remains a constant value of 0.65 even though the airflow rate was increased. These results indicate that the degree of saturation is affected mainly by the turbulence of the aqueous solution and remains the same above a certain airflow rate.

Towards the Saturation Throughput Disparity of Flows in Directional CSMA/CA Networks: An Analytical Model

  • Fan, Jianrui;Zhao, Xinru;Wang, Wencan;Cai, Shengsuo;Zhang, Lijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1293-1316
    • /
    • 2021
  • Using directional antennas in wireless Ad hoc networks has many superiorities, including reducing interference, extending transmission range, and increasing space division multiplexing. However, directional transmission introduces two problems: deafness and directional hidden terminals problems. We observe that these problems result in saturation throughput disparity among the competing flows in directional CSMA/CA based Ad hoc networks and bring challenges for modeling the saturation throughput of the flows. In this article, we concentrate on how to model and analyze the saturation throughput disparity of different flows in directional CSMA/CA based Ad hoc networks. We first divide the collisions occurring in the transmission process into directional instantaneous collisions and directional persistent collisions. Then we propose a four-dimensional Markov chain to analyze the transmission state for a specific node. Our model has three different kinds of processes, namely back-off process, transmission process and freezing process. Each process contains a certain amount of continuous time slots which is defined as the basic time unit of the directional CSMA/CA protocols and the time length of each slot is fixed. We characterize the collision probabilities of the node by the one-step transition probability matrix in our Markov chain model. Accordingly, we can finally deduce the saturation throughput for each directional data stream and evaluate saturation throughput disparity for a given network topology. Finally, we verify the accuracy of our model by comparing the deviation of analytical results and simulation results.

수분 재분포를 고려한 강우 침투 시 자연 사면에서의 포화깊이 산정 (Estimation of Saturation Depth by Reflecting Water-redistribution Phenomena at a Natural Slope)

  • 김웅구;장병욱;차경섭
    • 한국농공학회논문집
    • /
    • 제48권1호
    • /
    • pp.71-79
    • /
    • 2006
  • In Korea, most landslides occurred during the rainy season and had a shallow failure plane parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. The saturation depth was readily estimated using modified Green-Ampt model proposed by Chu et al. (Chu Model) at present. But Chu Model involves some problems for application, because water-redistribution phenomena were not effected. So the modified Chu Model (MCGAM) which reflect water redistribution phono mens was developed. The results showed that the MCGAM had a better agreement with measured volumetric water contents than existing Chu Model.

불포화 사면의 포화 부근 침투 특성을 고려한 수리전도도 모델 (A Hydraulic Conductivity Model Considering the Infiltration Characteristics Near Saturation in Unsaturated Slopes)

  • 오세붕;박기훈;김준우
    • 한국지반공학회논문집
    • /
    • 제30권1호
    • /
    • pp.37-47
    • /
    • 2014
  • 불포화 수리전도도는 Mualem 모세관 모델에 의하여 이론적으로 함수특성곡선으로부터 적분된다. 하지만 예측된 수리전도도는 포화 부근에서 모관흡수력의 미소한 변화에도 극도로 민감하다. 원활한 형태의 함수특성곡선에 의한 Mualem 수리전도도는 포화 부근에서 급격하게 감소하며, 수리적 거동을 신뢰할 수 있게 모델하지 못하거나 수치해의 안정성을 저해 한다. van Genuchten-Mualem(VGM) 수리전도도를 개선하기 위하여, 낮은 모관흡수력 수준에 있는 임의의 공기함입치이내에서 van Genuchten 함수특성곡선을 수정하였다. 수정 VG 곡선은 대수축에서 임의의 공기함입치에서 포화상태까지 선형화된다. 수정 VG 함수특성곡선은 실제 함수특성거동의 회귀분석에 영향을 끼치지 않으며 원래의 VG 함수특성곡선의 계수를 그대로 사용한다. 수정 VG 곡선을 이용하여, VGM 수리전도도는 임의의 공기합입치를 기준으로 구간별 적분하여 수정되었다. 수정 VGM 수리전도도가 해석적 해로 제안되었으며, 포화부근 영역에서 수리전도도가 급격하게 감소하는 현상이 제거되었다. 실제 사면의 2차원 침투해석을 통하여 VGM 수리전도도와 제안된 모델에 따른 수리거동을 비교하였다. 제안된 모델은 여러 강우조건에 따른 해의 수렴성을 확보하였지만, VGM 수리전도도를 적용하면, 포화부근의 수리전도도가 급격하게 감소하여 강우량이 많은 경우 해가 수렴하지 않았다. 특히 선행강우에 의한 초기 안전율과 집중강우 후 최종 안전율을 크게 평가할 수 있었다. 제안된 수리전도도 모델은 침투해석과 안정해석을 통하여 실제 사면의 붕괴를 재현할 수 있었다.