• Title/Summary/Keyword: Saturated velocity

Search Result 143, Processing Time 0.024 seconds

Estimating Correlation Dimensions of Land-Sea Breeze Phenomenon

  • Lee, Hwa-Woon;Kim, Yoo-Keun;Lee, Young-Gon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.81-89
    • /
    • 1999
  • This study estimates the correlation dimensions of the land-sea breeze phenomenon, that has a clear diurnal cycle, in order to gain a more detailed understanding of this phenomenon. The data adopted include north-south wind velocity component(v) and temperature(T) time series that were observed at Kimhae Airport and Inje University over a period of 5 days, from the 4th to the 8th of August, 1994. The embedding phase space of the time series were reconstructed from 2 to 14 dimensions, and the correlation dimensions of the attractors were then estimated. The results show that the land-sea breeze phenomenon exhibits a deterministic chaos with non-integer correlation dimension values between 2 and 3. Accordingly, 3 is the minimum number of independent variables required to model the dynamics of the landsea breeze phenomenon in the Kimhae area. Since the saturated embedding dimension, when the correlation dimension remains unchanged, is larger for the wind velocity v-component than for temperature, this indicates that wind velocity is susceptible to topology.

  • PDF

INFLUENCE OF SLIP CONDITION ON RADIATIVE MHD FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF HEAT ABSORPTION AND CHEMICAL REACTION.

  • VENKATESWARLU, M.;VENKATA LAKSHMI, D.;DARMAIAH, G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.333-354
    • /
    • 2016
  • The present investigation deals, heat and mass transfer characteristics with the effect of slip on the hydromagnetic pulsatile flow through a parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall.

Determinations of P, S-Wave Velocities and Pore Water Pressure Buildup with B-value for Nearly Saturated Sands (비배수 조건에서 반복하중을 받는 사질토의 B값(간극수압계수)에 따른 P파, S파 속도 및 간극수압 측정)

  • Lee, Sei-Hyun;Choo, Yun-Wook;Youn, Jun-Ung;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.71-83
    • /
    • 2007
  • Liquefaction resistance depends strongly upon the degree of saturation, which is expressed in terms of the pore pressure coefficient, B. The B-value has been widely used to quantify the state of saturation of laboratory samples. However, it is practically impossible to determine in situ state of saturation by using the B-value. So, P-wave velocity can be alternatively used as a convenient index for evaluating the in situ state of saturation. In this paper, the Stokoe type torsional shear (TS) testing system was modified to saturate the specimen, with which it is also possible to measure P ($V_p$), S-wave velocity ($V_s$) and the excess pore water pressure buildup In order to examine the effect of B-value for nearly saturated sands. A series of the tests were carried out at 3 relative densities (40%, 50% and 75%) and various B-values using Toyoura sand. Based on the test results, the variations of $V_p\;and\;V_s$ with B-value were analyzed and compared with a existing theoretically derived formula. The normalized pore water pressure, $du/{\sigma}{_0}'$ and cyclic threshold shear strain, ${\gamma}^c_{th}$ with B-value were also analyzed. Additionally the test results related to pore water pressure were analyzed by $V_p$ to apply to the field seismic analysis.

Experimental Study on the Change of Rock Properties due to Water Saturation (포화에 의한 암석물성 변화에 대한 실험적 연구)

  • Choi, Seung-Beom;Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.476-492
    • /
    • 2018
  • In this study, various laboratory experiments were conducted on tuff, basalt and diorite specimens, which were obtained in the southern part of Korean Peninsula. Experiments were performed under dry and water saturated conditions. Results showed that strength degradation and change of deformation characteristics were remarkable although the specimens had small porosity. Based on the results, regression models that are capable of predicting important mechanical rock properties, such as uniaxial compressive strength, Young's modulus, Brazilian tensile strength were proposed. P-wave velocity and Shore hardness were selected as independent variables and the results showed satisfactory prediction performance for the experimental data collected in this study.

Scattering of torsional surface waves in a three layered model structure

  • Gupta, Shishir;Pati, Prasenjit;Mandi, Anand;Kundu, Santimoy
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.443-457
    • /
    • 2018
  • In this article, a comparative study has been made to investigate the scattering behaviour of three layered structure model on torsional surface wave. For such model intermediate layer is taken as fiber reinforced composite, resting over a dry sandy Gibson substratum and underlying by different anelastic media. We consider two distinct mediums for topmost layer. In the first case, topmost layer has been taken as fluid saturated homogeneous porous layer, while in the second case the fluid saturated porous layer has been replaced by a transversely isotropic layer. Simple form expression for the secular equation of torsional surface wave has been worked out in both the cases by executing specific boundary conditions, which comprises Whittaker's function and its derivative, for imminent result that have been elaborated asymptotically. Some special cases have been constituted which are in excellent compliance with recorded literatures. For the sake of comparative study, numerical estimation and graphical illustration have been accomplished to identify the effects of the width ratio of the layers, Biot's gravity parameter, sandy parameter, porosity parameter and other heterogeneity parameters corresponding to the layers and half spaces, horizontal compressive and tensile initial stress on the phase velocity of torsional surface wave.

Best Use of the Measured Earthquake Data (지진관측자료의 효과적인 활용에 관한 고찰)

  • 연관희;박동희;김성주;최원학;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.36-43
    • /
    • 2001
  • In Korea, we are absolutely short of earthquake data in good quality from moderate and large earthquakes, which are needed fur the study of strong ground motion characteristics. This means that the best use of the available data is needed far the time being. In this respect, several methods are suggested in this paper, which can be applied in the process of data selection and analysis. First, it is shown that the calibration status of seismic stations can be easily checked by comparing the spectra from accelerometer and velocity sensor both of which are located at the same location. Secondly, it is recommended that S/N ratio in the frequency domain should be checked before discarding the data by only look of the data in time domain. Thirdly, the saturated earthquake data caused by ground motion level exceeding the detection limit of a seismograph are considered to see if such data can be used for spectrum analysis by performing numerical simulation. The result reveals that the saturated data can still be used within the dominant frequency range according to the levels of saturation. Finally, a technique to minimize the window effect that distorts the low frequency spectrum is suggested. This technique involves detrending in displacement domain once the displacement data are obtained by integration of low frequency components of the original data in time domain. Especially, the low frequency component can be separated by using discrete wavelet transform among many alternatives. All of these methods mentioned above may increase the available earthquake data and frequency range.

  • PDF

Detection of the gas-saturated zone by spectral decomposition using Wigner-Ville distribution for a thin layer reservoir (얇은 저류층 내에서 WVD 빛띠 분해에 의한 가스 포화 구역 탐지)

  • Shin, Sung-Il;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • Recently, stratigraphic reservoirs are getting more attention than structural reservoirs which have mostly developed. However, recognizing stratigraphic thin gas reservoirs in a stacked section is usually difficult because of tuning effects. Moreover, if the reflections from the brine-saturated region of a thin layer have the same polarity with those from the gas-saturated region, we could not easily identify the gas reservoir with conventional data processing technique. In this study, we introduced a way to delineate the gas-saturated region in a thin layer reservoir using a spectral decomposition method. First of all, amplitude spectrum with the variation of the frequency and the incident angle was investigated for the medium which represents property of Class 3, Class 1 or Class 4 AVO response. The results show that the maximum difference in the amplitude spectra between brine and gas-saturated thin layers occurs around the peak frequency independent of the incident angle and the type of AVO responses. In addition, the amplitude spectra of the gas-saturated zone are greater than those of brine-saturated one in Class 3 and Class 4 at the peak frequency while those of phenomenon occur oppositely in Class 1. Based on the results, we applied spectral decomposition method to the stacked section in order to distinguish the gas-saturated zone from the brine-saturated zone in a thin layer reservoir. To verify our new method, we constructed a thin-layer velocity model which contains both gas and brine-saturated zones which have the same reflection polarities. As a result, in the spectral decomposed sections near the peak frequency obtained by Wigner-Ville Distribution (WVD), we could identify the difference between reflections from gas- and brinesaturated region in the thin layer reservoir, which was hardly distinguishable in the stacked section.

Study on the Dependence of Ultrasonic Phase Velocity on Porosity, Frequency and Propagation Angle in Cancellous Bone (해면질골에서 다공율, 주파수 및 전파각에 대한 초음파 위상속도의 의존성 연구)

  • Lee, Kang-Il;Kim, Yong-Tae;Choi, Min-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • In the present study, the dependence of ultrasonic phase velocity on porosity and frequency in cancellous bone was predicted using the Biot model and the modified Biot-Attenborough (MBA) model for propagation in fluid-saturated porous media. It was also compared with previously published measurements in human and bovine cancellous bones in vitro. It was shown that the phase velocity in cancellous bone decreased with increasing porosity and frequency The dependence of phase velocity on propagation angle in cancellous bone as predicted using the Schoenberg model together with the Biot model and tile MBA model which were modified to include the effect of angle. The theoretical models used in the present study advance our understanding of the interaction between ultrasound and cancellous bone and can be expected to be usefully employed for the diagnosis of osteoporosis.

Seismic Velocity Change Due to Micro-crack Accumulation of Rock Samples from Seokmo Island, Korea (손상 진행에 따른 석모도 암석 시험편의 탄성파속도 변화)

  • Lee, Sang-Kyu;Choi, Ji-Hyang;Cheon, Dae-Sung;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.324-334
    • /
    • 2011
  • Seismic wave velocity change has been monitored due to the accumulation of micro-cracks by uniaxial loads on the rock samples from Seokmo Island with stepwise increase in 5 stages. After the load was applied up to 95% of UCS, P- and S-wave velocities varied in ranges of 0.9 ~ 18.3% and 2.8 ~ 14.8% of fresh rock sample velocities, respectively. Unlike seismic velocity of the dry rock samples that showed overall decreases after the loading, velocity changes of saturated rock samples were much more complicated. These seemed to be due to the mixture of two contradictory mechanisms; i.e. accumulation of micro-crack causes an increase in porosity and a decrease in wave velocity, while saturation causes an increase in wave velocity. Most of tested rocks showed a trend of velocity increase with low axial load and then velocity decrease at later stages. Starting stage of velocity decrease differs from samples to samples. After the failure of rock occurred, noticeable increases of porosity and decreases of wave velocity have been observed. It showed overall trend that the more the quartz contents and the lower the silicate, the higher the Young's modulus.

Evaluation of Soil Improvement by Carbonate Precipitation with Urease (요소분해효소에 의한 탄산칼슘 침전을 통한 지반 개량 평가)

  • Song, Jun Young;Sim, Youngjong;Jin, Kyu-Nam;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.61-69
    • /
    • 2017
  • This study presents the experimental results of $CaCO_3$ formation in sand by the Enzyme Induced Carbonate Precipitation (EICP) method. Concentration of $CaCO_3$ with elapsed reaction time is calibrated by standardized procedure by measuring $CO_2$ pressure, and it increases with time towards asymptotic value. Jumunjin sand saturated with EICP solution shows that both shear wave velocity and electrical conductivity sharply increase as the reaction starts to approach to the constant values after 50 hours of reaction time. Urease concentration of 0.5 g/L exhibits 224% higher final shear wave velocity than that of 0.1 g/L. The nucleation models hint that carbonate tends to precipitate not only at grain contacts but also at grain surfaces. Regardless of urease concentration, electrical conductivity and shear wave velocity follow the unique path. The scanning electron microscopic images and X-ray computed tomographic images validate the spatial configuration of produced $CaCO_3$ in soils.