• Title/Summary/Keyword: Saturated velocity

Search Result 144, Processing Time 0.031 seconds

Wave Propagation Characteristics in Saturated Porous Media I. Theoretical Solution (포화된 다공성매체에서 파동의 전파특성 I. 이론해의 유도)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.95-103
    • /
    • 2007
  • An analytical closed-form solution for wave propagation velocity and damping in saturated porous media is presented in this paper The fully coupled field model with compressible solid Brains and pore water were used to derive this solution. An engineering approach for the analysis of fully saturated porous media was adopted and closed-form solutions for one dimensional wave propagation in a homogeneous domain were derived. The solution is highly versatile in that it considers compression of the solid grains, compression of the pore water, deformation of the porous skeleton, and spatial damping and can be used to compute wavespeeds of first and second kind and damping coefficients in various geologic materials. This solution provides a means of analyzing the influence of material property variations on wavespeed and attenuation. In Part 2 of this work the theoretical solution is incorporated into the numerical code and the code is used in a parametric study on wave propagation velocity and damping.

Formulation of Mass Conservation and Linear Momentum Conservation for Saturated Porous Media in Arbitrary Lagrangian Eulerian(ALE) Description (포화된 다공질 매체의 질량 보존과 운동량 보존에 대한 Arbitrary Lagrangian Eulerian(ALE) 정식화)

  • Park, Tae-Hyo;Jung, So-Chan;Kim, Won-Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 2003
  • The solids and the fluids in porous media have a relative velocity to each other. Due to physically and chemically different material properties and their relative velocity, the behavior of saturated porous media is extremely complicated. Thus, in order to describe and clarify the deformation behavior of saturated porous media, constitutive models for deformation of porous media coupling several effects need to be developed in frame of Arbitrary Lagrangian Eulerian(ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian elements, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media which are considered for the behavior of the solids and the fluids. For this reason, mass balance equations for saturated porous media are derived here in ALE description frames. ALE formulations of mass conservation for the solid phase and the fluid phase are expressed. Then, linear momentum balance equation for porous media as multiphase media is expressed.

  • PDF

Turbulence Generation by Ultrasonically Induced Gaseous Cavitation in the $CO_2$Saturated Water Flow

  • Lee, Seung-Youp;Park, Young-Don
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1203-1210
    • /
    • 2003
  • Emission of ultrasonic vibration to turbulent flow promotes the turbulence generation due to the resonantly oscillating pressure field and thereby induced cavitation. In addition, ultrasonic vibration is well transmitted through water and not dissipated easily so that the micro-bubbles involved in the fluid induce the gaseous cavitation if the bubbles are resonated with the ultrasonic field. In the present study, we found through LDV measurement that the gaseous cavitation induced by ultrasonic vibration to CO$_2$saturated water flow in the rectangular cross-sectioned straight duct enhances turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation. We also found that the fluctuating velocity component induced by emitting the ultrasonic vibration in normal direction of a rectangular channel flow can be redistributed to stream-wise component by the agitation of gaseous cavitation.

Analysis of Seepage Velocity in Unsaturated Weathered Soils Using Rainfall Infiltration Test (강우침투실험을 통한 불포화 풍화토 지반의 강우 침투속도 분석)

  • Kim, Hoon;Shin, Ho-Sung;Kim, Yun-Tae;Park, Dug-Keun;Min, Tuk-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Rainfall infiltration test under one dimensional condition is conducted to evaluate the effect of rainfall intensity on seepage velocity and infiltration characteristics for initial unsaturated sediment. Experimental results are compared with those numerical simulations with respect to variations of pore water pressure, degree of saturation and discharge velocity with time, and both results give good agreement. High rainfall intensity tends to increase seepage velocity almost linearly. But it shows rapid increase as rainfall intensity approaches saturated hydraulic conductivity of the sediment. In addition, the upper part of wetting front depth is partially saturated, not fully. Therefore, actual wetting front depth is considered to advance faster than theoretical prediction, which leads to slope instability of unsaturated slope due to surface rainfall.

Determination of Density of Saturated Sand Considering Particle-fluid Interaction During Earthquake (입자-유체 상호거동을 고려한 지진시 포화 모래지반의 밀도 결정)

  • Kim, Hyun-Uk;Lee, Sei-Hyun;Youn, Jun-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.41-48
    • /
    • 2022
  • The mass density of the medium (ρ) used to calculate the maximum shear modulus (Gmax) of the saturated ground based on the shear wave velocity is unclear. Therefore, to determine the mass density, a verification formula and five scenarios were established. Laboratory tests were conducted, and the obtained results were compared. The mass density of the medium was assumed to be saturated (ρsat), wet (ρt), dry (ρdry), and submerged conditions (ρsub), and the Vs ratios of saturated to dry condition were obtained from each case. Assuming the saturated density (ρsat), the Vs ratio was consistent with the value from the resonant column test (RCT) results, and the value from the bender element test results was consistent with the wet density assumption (ρt). Considering the frequency range of earthquakes, it is concluded that applying the saturated density (ρsat) is reasonable as in the RCT results.

Synthesis of an Aspartame Precursor Using Immobilized Thermolysin in an Organic Solvent

  • Ahn, Kyung-Seop;Lee, In-Young;Kim, Ik-Hwan;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.204-209
    • /
    • 1994
  • The synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methylester (Z-APM), a precursor of aspartame, from N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp) and L-phenylalanine methylester hydrochlolide($L-PM\cdot HCI$) was investigated in a saturated-ethylacetate single phase system using immobilized thermolysin. Among the various supports tested, glyceryl-CPG was found to be most efficient for retaining enzyme activity. The enzyme immobilized onto glyceryl-CPG also showed the highest activity for Z-APM synthesis in saturated ethyl acetate. Z-APM conversion yield in saturated ethylacetate was half of that obtained in an ethyl acetate-buffer two-phase system under the same reaction conditions. However, as the mole ratio of $L-PM \cdot HCI$ to Z-Asp was increased to 4.0, the conversion yield reached 95 %. When continuous synthesis of Z-APM was canied out in a plug flow reactor (PFR) with 80 mM of L-PMㆍHCI and 20 mM of Z-Asp in saturated ethylacetate (pH 5.5), more than 95 % of Z-Asp was converted to Z-APM with a space velocity of 1.16 $hr^{-1} at 40^{\circ}C$. Although the operational stability in PFR was reduced rapidly, more than 80% of initial activity was maintained in CSTR even after a week of operation.

  • PDF

Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation (막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포)

  • 강희찬;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

Embedded type new in-situ soil stiffness assessment and monitoring technique

  • Namsun Kim;Jong-Sub Lee;Younggeun Yoo;Jinwook Kim;Junghee Park
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • We aimed to assess the evolution of small-strain stiffness and relative density in non-compacted embankment layers. We developed embedded type in-situ soil stiffness measurement devices for monitoring small-strain stiffness occurring after filling at a test site and conducted comprehensive laboratory compaction tests using an oedometer cell with a bender element. However, direct comparison is extremely difficult because the shear wave velocity measured in the field and laboratory depend on depth and effective stress, respectively. Therefore, we propose a method for establishing a relationship between effective stress and depth using a compressibility model. In this study, the shear wave velocity measured in the field was compared to the estimated shear wave velocity-depth profiles for completely dry and saturated conditions with different relative densities. The relative density under saturated soil conditions may vary between 50% and 90% and tends to be closer to 95%. Under dry soil conditions, the relative density of the embankment can vary from 30% to 70% and tends to approach 76%. For model validation, the relative density estimated from shear wave velocity-depth profiles was compared to that estimated from DCPI data. In other words, the results analyzed in the context of an effective stress-depth model enable the prediction of engineering properties such as the small-strain stiffness and relative density of embankment layers. This study demonstrates that physics-based data analyses successfully capture the relative density of non-compacted embankment layers.

Measuring Temperature on Wood Surface at the Beginning of Drying Using IR Image Measuring System (적외선 화상처리 장치를 이용한 건조초기 목재 표면 온도 측정)

  • Lee, Kwan-Young;Kang, Ho-Yang;Lee, Min-Kyung
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.79-85
    • /
    • 2006
  • Temperature of board surface was monitored during drying using an IR image measurement system. Boards were water-saturated and dried at the levels of four temperatures and three air velocities. At higher DB the surface temperature increased more steeply and level off period was significantly short. At the DB temperatures of 70, 80, $90^{\circ}C$ the period where the surface temperature was equivalent to WB temperature was constant regardless of air velocity while at $60^{\circ}C$ it decreased as air velocity increased. It was confirmed that a surface transfer coefficient increased with DB temperature. Variation of temperature profile on a wood surface increased with DB temperature and air velocity.

  • PDF

Development of energy-based excess pore pressure generation model using damage potential (손상잠재력을 이용한 에너지-과잉간극수압 발현 모델 개발)

  • Park, Keun-Bo;Kim, Soo-Il;Kim, Ki-Poong;Lee, Chae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.575-586
    • /
    • 2008
  • The main objective of this paper is to develop an improved model for the analysis of liquefaction potential and to predict excess pore pressure (EPP) using the proposed model that can simulate behavior of saturated sand under earthquake loading conditions. The damage concept is adopted for the development of the proposed model. For the development of the model, a general formulation based on experimental results and damage potential using cumulative absolute velocity (CAV) is proposed for a more realistic description of dynamic responses of saturated sand. Undrained dynamic triaxial tests are conducted using earthquake loading conditions. Based on test results, the NCER-NCW function in terms of $w_d$ and CAV is developed. Procedure for the evaluation of EPP and determination of model parameters for the proposed model is presented as well. For the determination of initial liquefaction, the minimum curvature method using the NCS-NCW curve is proposed. It is observed that predicted initial liquefaction using the proposed method agrees well with measured initial liquefaction. From results of additional undrained dynamic triaxial tests, it is seen that predicted EPP generation using the proposed model agrees well with measured results for earthquake loading cases.

  • PDF