• Title/Summary/Keyword: Saturated sand

Search Result 185, Processing Time 0.022 seconds

Analysis of post-failure response of sands using a critical state micropolar plasticity model

  • Manzari, Majid T.;Yonten, Karma
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.187-206
    • /
    • 2011
  • Accurate estimations of pre-failure deformations and post-failure responses of geostructures require that the simulation tool possesses at least three main ingredients: 1) a constitutive model that is able to describe the macroscopic stress-strain-strength behavior of soils subjected to complex stress/strain paths over a wide range of confining pressures and densities, 2) an embedded length scale that accounts for the intricate physical phenomena that occur at the grain size scale in the soil, and 3) a computational platform that allows the analysis to be carried out beyond the development of an initially "contained" failure zone in the soil. In this paper, a two-scale micropolar plasticity model will be used to incorporate all these ingredients. The model is implemented in a finite element platform that is based on the mechanics of micropolar continua. Appropriate finite elements are developed to couple displacement, micro-rotations, and pore-water pressure in form of $u_n-{\phi}_m$ and $u_n-p_m-{\phi}_m$ (n > m) elements for analysis of dry and saturated soils. Performance of the model is assessed in a biaxial compression test on a slightly heterogeneous specimen of sand. The role of micropolar component of the model on capturing the post-failure response of the soil is demonstrated.

Evaluation of Liquefiable Soils by Energy Concept (에너지 개념에 기초한 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Sun, Yu-Jung;Park, Keun-Bo;Park, Seong-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.590-599
    • /
    • 2006
  • In this study, Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal loading, increasing wedge loading, and real earthquake loading were investigated focusing on the dissipated energy. From the results of cyclic triaxial test, liquefaction resistance strength was calculated by the concept of energy according to the type of input loading. Liquefaction resistance strength was expressed in accumulated dissipated energy calculated from stress-strain curve(hysteresis loop). The dissipated energy according to loading type was compared and the energy-based evaluation was proposed. The procedures are presented in terms of normalized energy demand(NED), normalized energy capacity(NEC), and factor of safely, where NED is the load imparted to the soil by the loading(both amplitude and duration), NEC is the demand required to induce liquefaction, and factor of safely is defined as the ratio of NEC and NED.

  • PDF

An Experimental Study on the Liquefaction Behavior under Various Loading Conditions (다양한 입력하중에서의 액상화 발생 특성 비교 연구)

  • Kim, Soo-Il;Hwang, Seon-Ju;Park, Keun-Bo;Choi, Jae-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.320-327
    • /
    • 2005
  • Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal, wedge, increasing wedge and real earthquake loading are investigated focusing on the excess pore water pressure build up instead of liquefaction resistance strength in this paper. There are large differences between two types of earthquake loading - impact and vibration in liquefaction characteristics. The angle of phase change line of sinusoidal loading is very close to the vibration type, whereas the cumulative deviator stress and cumulative plastic strain are larger than two types of real earthquake loadings. On the other hand, the liquefaction characteristics of increasing wedge loadings are located in the range between vibration and impact earthquake loadings. It is concluded that the sinusoidal loading overestimates the resistance of soil under real earthquake loading. Based on results obtained, the increasing wedge loading can reflect the liquefaction behavior under real earthquake loadings more efficiently than sinusoidal loading based on equivalent uniform stress concept.

  • PDF

Viscous fluid characteristics of liquefied soils and behavior of pile subjected to flow of liquefied soils (액상화된 지반의 점성 유체 특성과 그 흐름이 말뚝의 거동에 미치는 영향 분석)

  • Hwang, Jae-Ik;Kim, Chang-Yeob;Chung, Choong-Ki;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.722-729
    • /
    • 2004
  • The horizontal movement of sloping ground due to flow liquefaction has caused many pile foundations to fail, especially those in ports and harbor structures. In this study, a virtual case is assumed in which flow liquefaction is induced by earthquake loads in a fully saturated infinite sand slope with a single pile installation. Under the assumption that the movement of liquefied ground is viscous fluid flow, the influence of ground movement due to flow liquefaction on the pile behavior was analyzed. Since the liquefied soil is assumed as a viscous fluid, its viscosity must be evaluated, and the viscosity was estimated by the dropping ball method ,md the pulling bar method. Finally, the influence of the flow of liquefied soil on a single pile installed in an infinite slope was analyzed by a numerical method.

  • PDF

Identification of the Properties of Soils and Defect Detection of Buried Pipes Using Torsional Guided Waves (비틀림 유도파를 이용한 토양 특성 규명 및 지하매설 배관 결함 검출)

  • Park, Kyung-Jo;Kim, Chung-Yup
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-62
    • /
    • 2013
  • A technique is presented that uses a circular waveguide for the measurement of the bulk shear (S-wave) velocities of unconsolidated, saturated media, with particular application to near surface soils. The technique requires the measurement of the attenuation characteristics of the fundamental torsional mode that propagate along an embedded pipe, from which the acoustic properties of the surrounding medium are inferred. From the dispersion curve analysis, the feasibility of using fundamental torsional mode which is non-dispersive and have constant attenuation over all frequency range is discussed. The principles behind the technique are discussed and the results of an experimental laboratory validation are presented. The experimental data are best fitted for the different depths of wetted sand and the shear velocities are evaluated as a function of depths. Also the characteristics of the reflected signal from the defects are examined and the reflection coefficients are calculated for identifying the relation between defect sizes and the magnitude of the reflected signal.

Numerical Analysis for the Geological Engineering Characteristics of Unconsolidated Sediment (미고결 퇴적물의 지질공학적 특성에 대한 수치해석적 연구)

  • CHO Tae-Chin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.215-224
    • /
    • 1990
  • Finite element model capable of solving coupled deformation-fluid diffusion equations for the fully saturated porous medium was developed using Galerkin's residual method. This model was used to study the mechanical and hydraulic behaviors of unconsolidated sediment near South Harbor, Pusan. The vertical displacement of top surface clay sediment, when subjected to the external load, is significantly affected by the excessive pore pres- sure buildup and its decay due to the pore fluid diffusion. The sand deposit overlain by the much less permeable clay layer serves as a flow channel. Consequently, the fluid diffusion due to pore pressure difference is significantly facilitated, which also affects the diffusion-dependent sediment deformation.

  • PDF

The Method of Estimating Group Effect with Small Pull-out Tests of Screw Anchors (나선형 앵커의 실내인발시험을 이용한 무리효과 평가기법)

  • Park Si-Sam;Lee Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.123-131
    • /
    • 2005
  • In the present study, laboratory pull-out tests with screw anchors are carried out to investigate behavior characteristics of the anchors used in foundation system of underground structures which are applied to uplifting seepage forces. Small scaled pull-out tests in sand under saturated condition and dry condition were carried out. For estimating the group effects of the anchors, the upward displacement and the pullout load varied with spacing of the anchor were observed. The test results were compared with theoretical equation for the ultimate pull-out force. Also, the result of tests can be used to the finite element analysis program, $PENTAGON^{2D}$.

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.

The dynamic response of adjacent structures with the shallow foundation of different height and distance on liquefiable saturated sand

  • Jilei Hu;Luoyan Wang;Wenxiang Shen;Fengjun Wei;Rendong Guo;Jing Wang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.135-148
    • /
    • 2023
  • The structure-soil-structure interaction (SSSI) effect in adjacent structures may affect the liquefaction-induced damage of shallow foundation structures. The existing studies only analysed the independent effects on the structural dynamic response but ignored the coupling effect of height difference and distance of adjacent structures (F) on liquefied foundations on the dynamic response. Therefore, this paper adopts finite element and finite difference coupled dynamic analysis method to discuss the effect of the F on the seismic response of shallow foundation structures. The results show that the effect of the short structure on the acceleration response of the tall structure can be neglected as F increases when the height difference reaches 2 times the height of the short structure. The beneficial effect of SSSI on short structures is weakened under strong seismic excitations, and the effect of the increase of F on the settlement ratio gradually decreases, which causes a larger rotation hazard. When the distance is smaller than the foundation width, the short structure will exceed the rotation critical value and cause structural damage. When the distance is larger than the foundation width, the rotation angle is within the safe range (0.02 rad).

Acoustic Characteristics of Sand Sediment with Circular Cylindrical Pores in Water (수중 원통형 다공성 모래퇴적물의 음향특성)

  • 윤석왕;이용주;노희설
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 2002
  • Acoustic characteristics of water sediment were experimentally studied in laboratory. Water saturated sand sediment less than the grain size of 0.5 mm diameter is uniformly distributed in an acryl box (100 mm×100mm×42mm) with material thickness 1 mm. Pores in the acryl box are modeled as the structure of cylindrical pore tubes (diameter 3 mm and length 42 mm) filled with water. Cylindrical pore tubes have porosities 0%, 5%, 11%, 18% and 26 % controlled by the tube numbers. Transmitted acoustic waves through sand sediment specimen are analyzed as the functions of porosity and frequency from 0.3 MHz to 4 MHz. Transmitted acoustic waves are mixed with the first-kind wave from whole specimen and the second-kind wane from cylindrical pore tubes. For the center frequency 1 MHz, the first kind wave is dominant but for the center frequency 2.25 MHz, the second kind wave is dominant. In the case of the first-kind wave, as the porosity increases, the transmission coefficient decreases and the sound speed decreases to the sound speed of water. As the frequency increases, the transmission coefficient decreases but the sound speed is almost constant. In the case of the second-kind wave, as the porosity increases, the transmission coefficient increases but the sound speed is almost constant. The transmission coefficient and the sound speed are almost constant as a function of frequency.