• Title/Summary/Keyword: Satellites data

Search Result 668, Processing Time 0.029 seconds

Satellite Laser Ranging System at Geochang Station

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Yu, Sung-Yeol;Choi, Mansoo;Park, Eunseo;Park, Jong-Uk;Choi, Chul-Sung;Kim, Simon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.253-261
    • /
    • 2018
  • Korea Astronomy and Space Science Institute (KASI) has been developing the space optical and laser tracking (SOLT) system for space geodesy, space situational awareness, and Korean space missions. The SOLT system comprises satellite laser ranging (SLR), adaptive optics (AO), and debris laser tracking (DLT) systems, which share numerous subsystems, such as an optical telescope and tracking mount. It is designed to be capable of laser ranging up to geosynchronous Earth orbit satellites with a laser retro-reflector array, space objects imaging brighter than magnitude 10, and laser tracking low Earth orbit space debris of uncooperative targets. For the realization of multiple functions in a novel configuration, the SOLT system employs a switching mirror that is installed inside the telescope pedestal and feeds the beam path to each system. The SLR and AO systems have already been established at the Geochang station, whereas the DLT system is currently under development and the AO system is being prepared for testing. In this study, the design and development of the SOLT system are addressed and the SLR data quality is evaluated compared to the International Laser Ranging Service (ILRS) tracking stations in terms of single-shot ranging precision. The analysis results indicate that the SLR system has a good ranging performance, to a few millimeters precision. Therefore, it is expected that the SLR system will not only play an important role as a member of the ILRS tracking network, but also contribute to future Korean space missions.

Histogram Matching of Sentinel-2 Spectral Information to Enhance Planetscope Imagery for Effective Wildfire Damage Assessment

  • Kim, Minho;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.517-534
    • /
    • 2019
  • In abrupt fire disturbances, high quality images suitable for wildfire damage assessment can be difficult to acquire. Quantifying wildfire burn area and severity are essential measures for quick short-term disaster response and efficient long-term disaster restoration. Planetscope (PS) imagery offers 3 m spatial and daily temporal resolution, which can overcome the spatio-temporal resolution tradeoff of conventional satellites, albeit at the cost of spectral resolution. This study investigated the potential of augmenting PS imagery by integrating the spectral information from Sentinel-2 (S2) differenced Normalized Burn Ratio (dNBR) to PS differenced Normalized Difference Vegetation Index (dNDVI) using histogram matching,specifically for wildfire burn area and severity assessment of the Okgye wildfire which occurred on April 4th, 2019. Due to the difficulty in acquiring reference data, the results of the study were compared to the wildfire burn area reported by Ministry of the Interior and Safety. The burn area estimates from this study demonstrated that the histogram-matched (HM) PS dNDVI image produced more accurate burn area estimates and more descriptive burn severity intervals in contrast to conventional methods using S2. The HM PS dNDVI image returned an error of only 0.691% whereas the S2 dNDVI and dNBR images overestimated the wildfire burn area by 5.32% and 106%, respectively. These improvements using PS were largely due to the higher spatial resolution, allowing for the detection of sparsely distributed patches of land and narrow roads, which were indistinguishable using S2 dNBR. In addition, the integration of spectral information from S2 in the PS image resolved saturation effects in areas of low and high burn severity.

Fabrication and Performance Test of Small Satellite Camera with Focus Mechanism (포커스 메커니즘이 적용된 소형 위성 카메라의 제작 및 성능 실험)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2019
  • The precise alignment between optical components is required in high-resolution earth observation satellites. However, the misalignment of optical components occurs due to external factors such as severe satellite launch environment and space environment. A satellite optical system with a focus mechanism is required to compensate for the image quality degraded by these misalignments. This study designed, fabricated, aligned precisely, and carried out a performance tests for the image quality of the system. The satellite optical camera performance tests were carried out to check the image quality change by operating the focus mechanism and to analyze the satellite optical system MTF by photographing USAF target using the autocollimator. According to the experimental results, the misalignments can be compensated sufficiently with the focus mechanism. Finally the basic data for re-focusing algorithm of the optical system was obtained through this study.

Satellite Monitoring of Reclamation and Land Cover Change Neighboring Tidal Flats on the West Coast of North Korea: Comparative Approaches Using Artificial Intelligence and the Normalized Difference Water Index

  • Sanae Kang;Chul-Hee Lim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.409-423
    • /
    • 2023
  • North Korea is carrying out reclamation activities in tidal flat areas distributed throughout the west coast. Previousremote sensing research on North Korean tidal flats either failsto reflect recent trends or focuses on identifying and analyzing tidal flats. Thisstudy aimsto quantify the impact of recent reclamation activitiesin North Korea's coastal areas and contribute knowledge useful for determining the best remote sensing methods for coastal areas with limited accessibility, such as those in North Korea. Using Landsat-8 OLI images from 2014-2022, we analyzed land cover changesin an area on the west coast of Pyeonganbuk-do where reclamation activities are underway. Unsupervised classification using the normalized difference water index and the random forest classification technique were each used to divide the study area into classification groups, and changes in their areas over time were analyzed. The resultsshow a clear decrease in the water area and a tendency to increase cultivated area,supporting the evidence that North Korea'sreclamation isfor agricultural land expansion.Along coasts behind seawalls, the water area decreased by nearly half, and the cultivated area increased by over 2,300%, indicating significant changes and highlighting the anthropogenic nature of the cover changes due to reclamation. Both methods demonstrated high accuracy, making them suitable for detecting cover changes caused by reclamation. It is expected that further quality research will be conducted through the use of high-resolution satellite images and by combining data from multiple satellites in the future.

The Precision Analysis of Long Baseline Measurement by using Broadcast Ephemeris and Precise Ephemeris of GPS Satellites (GPS 위성의 방송력과 정밀력을 이용한 장기선측정 정밀도 분석)

  • Yoo, Hwan-Hee;Pior, Myoung-Young;Fujii, Yoichiro
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.153-167
    • /
    • 1997
  • The purpose of this study is to estimate the precision of GPS survey for the long baseline measurement. For this, we performed the simultaneous GPS observations at two points in Korea and nine points in Japan, and analyzed the precision of GPS survey by using broadcast ephemeris and precise ephemeris. As the results, in using precise emepheris and broadcast emepheris for the baseline less than 100km, each precisions are less than 0.1ppm. But the precision of precise emepheris is more improved than that of broadcast ephemeirs in the case of the baseline longer than 100km. That is, in comparing the results of VLBI and GPS survey, the precision is 0.13ppm for broadcast ephelneris and 0.04ppm for precise ephemeris. We expect that in the future this study will be used as the basic data for using broadcast ephemeris and precise ephemeris in GPS survey for the long baseline mearsurment.

  • PDF

Estimation of Spatial Evapotranspiration Using satellite images and SEBAL Model (위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구)

  • Ha, Rim;Shin, Hyung-Jin;Lee, Mi-Seon;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.233-242
    • /
    • 2010
  • SEBAL (Surface Energy Balance Algorithm for Land) developed by Bastiaanssen (1995) is an image-processing model comprisedof twenty-five sub models that calculates spatial evapotranspiration (ET) and other energy exchanges at the surface. SEBAL uses image data from Landsat or other satellites measuring thermal infrared radiation, visible and near infrared. In this study, the model was applied to Gyeongancheon watershed, the main tributary of Han river Basin. ET was computed on apixel-by-pixel basis from an energy balance using 4 years (2001-2004) Landsat and MODIS images. The scale effect between Landsat (30 m) and MODIS (1 km) was evaluated. The results both from Landsat and MODIS were compared with FAO Penman-Monteith ET. The absolute errors between satellite ETs and Penman-Monteith ET were within 12%. The spatial and temporal characteristics of ET distribution within the watershed were also analyzed.

A Study on the Analysis of Jeju Island Precipitation Patterns using the Convolution Neural Network (합성곱신경망을 이용한 제주도 강수패턴 분석 연구)

  • Lee, Dong-Hoon;Lee, Bong-Kyu
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 2019
  • Since Jeju is the absolute weight of agriculture and tourism, the analysis of precipitation is more important than other regions. Currently, some numerical models are used for analysis of precipitation of Jeju Island using observation data from meteorological satellites. However, since precipitation changes are more diverse than other regions, it is difficult to obtain satisfactory results using the existing numerical models. In this paper, we propose a Jeju precipitation pattern analysis method using the texture analysis method based on Convolution Neural Network (CNN). The proposed method converts the water vapor image and the temperature information of the area of ​​Jeju Island from the weather satellite into texture images. Then converted images are fed into the CNN to analyse the precipitation patterns of Jeju Island. We implement the proposed method and show the effectiveness of the proposed method through experiments.

Magnetic Cleanliness Algorithm for Satellite CAS500-3 (차세대 중형 3호의 Magnetic Cleanliness Algorithm)

  • Cheong Rim Choi;Tongnyeol Rhee;Seunguk Lee;Dooyoung Choi;Kwangsun Ryu
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.229-238
    • /
    • 2023
  • One of the important ways to improve the performance of magnetometers in satellite exploration is to reduce magnetic noise from satellites. One of the methods to decrease magnetic noise is by extending the satellite boom. However, this approach is often not preferred due to its high cost and operational considerations. Therefore, in many cases, removing interference from the satellite platform in the measured dataset is widely utilized after data acquisition. In this study, we would like to introduce an algorithm for removing magnetic noise observed from magnetometers installed on two solar panels and one main body without a boom.

Preflight Calibration Results of Wide-Angle Polarimetric Camera (PolCam) onboard Korean Lunar Orbiter, Danuri

  • Minsup Jeong;Young-Jun Choi;Kyung-In Kang;Bongkon Moon;Bonju Gu;Sungsoo S. Kim;Chae Kyung Sim;Dukhang Lee;Yuriy G. Shkuratov;Gorden Videen;Vadym Kaydash
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.293-299
    • /
    • 2023
  • The Wide-Angle Polarimetric Camera (PolCam) is installed on the Korea's lunar orbiter, Danuri, which launched on August 5, 2022. The mission objectives of PolCam are to construct photometric maps at a wavelength of 336 nm and polarization maps at 461 and 748 nm, with a phase angle range of 0°-135° and a spatial resolution of less than 100 m. PolCam is an imager using the push-broom method and has two cameras, Cam 1 and Cam 2, with a viewing angle of 45° to the right and left of the spacecraft's direction of orbit. We conducted performance tests in a laboratory setting before installing PolCam's flight model on the spacecraft. We analyzed the CCD's dark current, flat-field frame, spot size, and light flux. The dark current was obtained during thermal / vacuum test with various temperatures and the flat-field frame data was also obtained with an integrating sphere and tungsten light bulb. We describe the calibration method and results in this study.

Interface on ground station to shorten the delivery time for archiving order for satellite images (획득영상 배포시간 단축을 위한 지상국 인터페이스)

  • Myung-Jun Lee;Gap-Ho Jeon;Myeong-Shin Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.34-40
    • /
    • 2024
  • Satellite images from Earth-orbit satellites are widely utilized in both the public sector and commercial industry. To achieve a high-quality satellite image service, satellite operation focuses on accurately transmitting images and information of space to users. In particular, the delivery time from ground system to user is the core factor of the quality of a ground station service. Thus, much development is underway to specifically shorten the time required for distribution to users. In this paper, we introduce an interface design of a ground station to shorten the delivery time from order to distribution, related to the archiving order of satellite images.