• Title/Summary/Keyword: Satellite remote sensing

Search Result 2,506, Processing Time 0.026 seconds

Generation of Super-Resolution Benchmark Dataset for Compact Advanced Satellite 500 Imagery and Proof of Concept Results

  • Yonghyun Kim;Jisang Park;Daesub Yoon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.459-466
    • /
    • 2023
  • In the last decade, artificial intelligence's dramatic advancement with the development of various deep learning techniques has significantly contributed to remote sensing fields and satellite image applications. Among many prominent areas, super-resolution research has seen substantial growth with the release of several benchmark datasets and the rise of generative adversarial network-based studies. However, most previously published remote sensing benchmark datasets represent spatial resolution within approximately 10 meters, imposing limitations when directly applying for super-resolution of small objects with cm unit spatial resolution. Furthermore, if the dataset lacks a global spatial distribution and is specialized in particular land covers, the consequent lack of feature diversity can directly impact the quantitative performance and prevent the formation of robust foundation models. To overcome these issues, this paper proposes a method to generate benchmark datasets by simulating the modulation transfer functions of the sensor. The proposed approach leverages the simulation method with a solid theoretical foundation, notably recognized in image fusion. Additionally, the generated benchmark dataset is applied to state-of-the-art super-resolution base models for quantitative and visual analysis and discusses the shortcomings of the existing datasets. Through these efforts, we anticipate that the proposed benchmark dataset will facilitate various super-resolution research shortly in Korea.

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

A Study on the Detection Method of Red Tide Area in South Coast using Landsat Remote Sensing (Landsat 위성자료를 이용한 남해안 적조영역 검출기법에 관한 연구)

  • Sur, Hyung-Soo;Song, In-Ho;Lee, Chil-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.129-141
    • /
    • 2006
  • The image data amount is increasing rapidly that used geography, sea information etc. with great development of a remote sensing technology using artificial satellite. Therefore, people need automatic method that use image processing description than macrography for analysis remote sensing image. In this paper, we propose that acquire texture information to use GLCM(Gray Level Co-occurrence Matrix) in red tide area of artificial satellite remote sensing image, and detects red tide area by PCA(principal component analysis) automatically from this data. Method by sea color that one feature of remote sensing image of existent red tide area detection was most. but in this paper, we changed into 2 principal component accumulation images using GLCM's texture feature information 8. Experiment result, 2 principal component accumulation image's variance percentage is 90.4%. We compared with red tide area that use only sea color and It is better result.

  • PDF

Technology Tree and Domestic Research Status of Satellite Remote-Sensing of the Earth (위성자료를 응용한 지구관측 분야의 기술분류와 국내 연구동향 파악)

  • 김승범;김문규;안명환;김계현;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.253-273
    • /
    • 2001
  • In this review article, we produce a technology tree in the earth observation by remote sensing, which is the Level I technology in the tree. To define Level II technologies, we create a two-dimensional matrix of technologies viewed from methodology and application viewpoints. Consequently the following fields are selected: reception-archiving, atmosphere, ocean, land, GIS, and common technology. For each Level II technology, we extract half a dozen Level III and about 20-30 Level IV technologies. For each Level IV technology, we review the status of domestic research and the approaches for acquiring deficient technology in Korea. Also we survey foreign institutions specializing in the deficient technologies and the time when the deficient technologies are needed. Furthermore we assign priority technologies from the viewpoints of public need and economic benefits. The information given in this article would help understand and collaborate among different disciplines, be a useful guide to a beginner to remote sensing, and assist policy making.

Information for Urban Risk Management: the Role of Remote and Close Sensing

  • Hofstee, Paul;Genderen, John van
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.162-164
    • /
    • 2003
  • The multi-disciplinary research project Strengthening Local Authorities in Risk Management (SLARIM), initiated by ITC, includes three case study cities in Asia. An important question is: what are the essential data for risk management and how to access such data. The role of common sources (e.g. census data), data derived from remote sensing (high-resolution satellite imagery, aerial photos), and data from close sensing (field observation, including mobile GIS) to acquire essential risk management data will be discussed. Special attention is given to the question of the minimum area and to disaggregating population data. A few examples are given of Kathmandu / Lalitpur, Nepal.

  • PDF

Application of High-Resolution Satellite Image to Vegetation Environment Evaluation in the Urban Area

  • Shibata, Satoshi;Tachiiri, Kaoru;Gotoh, Keinosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.502-504
    • /
    • 2003
  • The main objective of this study is to examine the effectiveness of newly available high spatial resolution satellite images, in evaluating vegetation environment of the urban areas. In doing so, we have used satellite images from QuickBird and selected some areas of Fukuoka City, Kyushu Japan, as study area. The results of the study revealed that, high resolution images are more effective in close monitoring of the vegetation status and green plants should be planted in open spaces and roofs of urban areas to increase vegetation, which will in turn act as a remedy to reduce heat island phenomenon.

  • PDF

Estimation of Insolation over the Oceans around Korean Peninsula Using Satellite Data

  • Park, Kyung-Won;Kim, Young-seup;Sang, Chung-Hyo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.227-230
    • /
    • 1999
  • Surface solar radiation over the sea is estimated using Visible and Infrared Spin Scan Radiometer data onbord Geostationary Meteorological Satellite(GMS) 5 for January, 1997 to December 1997 in clear and cloudy conditions. The hourly insolation is estimated with a spatial resolution of 5$\times$ 5 km grid. The island pyranometer belonging to the Japan Meteorological Agency is used for validation of the estimated insolation. It is shown that the estimated hourly insolation has RMSE(root mean square) error of 104 W/$m^2$. The variability of the hourly solar radiation was investigated on 3 areas over seas around Korean Peninsula. The solar radiation of East Sea is similar to Yellow Sea. The maximum value of solar radiation is on June of year. The maximum value in south sea is on August because weather is poor by low pressure and front in June

  • PDF

Influence of atmospheric aerosol on satellite ocean color data in the East/Japan Sea (동해에서 대기에어로졸이 해색위성자료에 미치는 영향)

  • Yamada, Keiko;Kim, Sang-Woo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.53-54
    • /
    • 2009
  • The influence of atmospheric aerosol on satellite ocean color data were evaluated using SeaWiFS monthly standard mapped image products. The atmospheric optical thickness (AOT) was increased in spring and summer, and it showed the strong positive correlation with remote sensing reflectance, normalized waterleaving radiance /solar irradiance, at 555 nm (Rrs555) which is a component of the satellite chlorophyll estimation. Such the high AOT and high Rrs555 pixels showed overestimation of satellite chlorophyll in spring, especially in the area which showed large phytoplankton absorption which 1s expressed by low remote sensing reflectance at 443, 490 and 510 nm (Rrs 443, Rrs490 and Rrs510).

  • PDF

Determination of Sampling Unit Size for Cultivation Area Survey using Remote Sensing Technology

  • Park, Jin-Woo;Shin, Gi-Eun;Lee, Suk-Hoon;Byun, Jong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.733-741
    • /
    • 2012
  • The successful launch of Arirang satellites allow the acquisition of high resolution satellite imagery of Korean territory and enables the transition from the conventional cultivation area survey method to new image based methods adopted in advanced nations. In this study, we suggested reasonable sizes of the primary sampling unit and the secondary sampling unit for the satellite imagery based sampling design in 8 provinces preselected for this research. The PSU size was determined mainly in consideration of intracorrelation that shows the degree of homogeneity within each cluster and the efficiency of the image process. For the SSU size, we considered the relative standard error and the differences between the land cover maps produced by the Ministry of Environment and the satellite imagery processed by the National Statistical Office.

LEO Satellite Time Synchronization Architecture

  • Kwon, Ki-Ho;Kim, Day-Young;Lee, Jong-In;Kim, Hak-Jung;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.367-370
    • /
    • 2006
  • A GPS-based time synchronization technique employing a refined HW circuitry and SW algorithm is considered as fine time-management system for Low Earth Orbit (LEO) remote sensing satellites. By synchronizing the On-Board Time (OBT) within satellites to the GPS 1PPS, a very expensive, highly accurate on-board clock is not required to determine the precise on-board time management. Also, the satellite command generation in ground stations and postprocessing of earth observation data which a particular image is acquired. This paper analyses on-orbit verification of the existing satellite time sync architecture and presents a new time sync architecture, operation and relation between the OBT and the GPS time.

  • PDF