• Title/Summary/Keyword: Satellite orbit

Search Result 1,182, Processing Time 0.029 seconds

A STUDY ON THE GENERATION OF EO STANDARD IMAGE PRODUCTS: SPOT

  • JUNG HYUNG-SUP;KANG MYUNG-HO;LEE YONG-WOONG;LEE HO-NAM;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.216-219
    • /
    • 2004
  • In this study, the concept and techniques to generate the level lA, lB and 2A image products have been reviewed. In particular, radiometric and geometric corrections and bands registration used to generate level lA, lB and 2A products have been focused in this study. Radiometric correction is performed to take into account radiometric gain and offset calculated by compensating the detector response non-uniformity. And, in order to compensate satellite altitude, attitude, skew effects, earth rotation and earth curvature, some geometric parameters for geometric corrections are computed and applied. Bands registration process using the matching function between a geometry, which is called 'reference geometry', and another one which is corresponds to the image to be registered is applied to images in case of multi-spectral imaging mode. In order to generate level-lA image products, a simple radiometric processing is applied to a level-0 image. Level-lB image has the same radiometry correction as a level-lA image, but is also issued from some geometric corrections in order to compensate skew effects, Earth rotation effects and spectral misregistration. Level-2A image is generated using some geo-referencing parameters computed by ephemeris data, orbit attitudes and sensor angles. Level lA image is tested by visual analysis. The difference between distances calculated level 1 B image and distances of real coordinate is tested. Level 2A image is tested Using checking points.

  • PDF

Synthesis of CoTiOx and Its Catalytic Activity in Continuous Wet TCE Oxidation (CoTiOx의 합성 및 연속 습식 TCE 산화반응에서의 촉매활성)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1431-1437
    • /
    • 2007
  • Cobalt titanates($CoTiO_x$), such as $CoTiO_3$ and $Co_2TiO_4$, have been synthesized via a solid-state reaction and characterized using X-ray diffraction(XRD) and X-ray photoelectron spectroscopic(XPS) measurement techniques, prior to being used for continuous wet trichloroethylene(TCE) oxidation at $36^{\circ}C$, to support our earlier chemical structure model for Co species in 5 wt% $CoO_x/TiO_2$(fresh) and(spent) catalysts. Each XRD pattern for the synthesized $CoTiO_3$ and $Co_2TiO_4$ was very close to those obtained from the respective standard XRD data files. The two $CoTiO_x$ samples gave Co 2p XPS spectra consisting of very strong main peaks for Co $2p_{3/2}$ and $2p_{1/2}$ with corresponding satellite structures at higher binding energies. The Co $2p_{3/2}$ main structure appeared at 781.3 eV for the $CoTiO_3$, and it was indicated at 781.1 eV with the $Co_2TiO_4$. Not only could these binding energy values be very similar to that exhibited for the 5 wt% $CoO_x/TiO_2$(fresh), but the spin-orbit splitting(${\Delta}E$) had also no noticeable difference between the cobalt titanates and a sample of the fresh catalyst. Neither of all the $CoTiO_x$ samples were active for the wet TCE oxidation, as expected, but a sample of pure $Co_3O_4$ had a good activity for this reaction. The earlier proposed model for the surface $CoO_x$ species existing with the fresh and spent catalysts is very consistent with the XPS characterization and activity measurements for the cobalt titanates.

Japanese Space Policy - Where is she going?

  • Hashimoto, Yasuaki
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.9
    • /
    • pp.435-443
    • /
    • 1997
  • Passing 26 years from 1970 when the first satellite was launched into the orbit, Japan developed and successfully launched H-II from Tanegashima Space Center in 1994. During those period, Japanese space policy has experienced a big shake from independent development to technology import from the US, and back again to independent development. In general, the H-II rocket which was manufactured by 100% domestic technology, brings Japan from the old era (experimental stage) to the new era (practical use stage). Fundamental Policy of Japan's Space Activities, which decides such policy as mentioned, was revised in January, 1996 this year after an interval of 7 years. This revised outline confirms the result of Japanese space technology until present and identifies the future direction and framework of her space activities for a period of coming ten years on the basis of a ong-term perspective towards the 21st century. However, when comparing with the last Fundamental Policy in 1989, there seems no big change in it, and a long-term perspective is also not seen there. The description varies on some important points in international space law, like international cooperation, protection of environment, commercial use, etc. In addition, the immaturity as well as the necessity of broader discussion are felt because neither this Fundamental Policy nor The National Defense Program Outline treated any national and international security matters concerning outer space. Considering the present time when Japan enters into the practical use of outer space, such as application, commercial use and launching service, etc, it is doubtful whether new Fundamental Policy was properly planned or not. It seems necessary to use several measures by which the public opinion, opinions from industry and debate on the security are reflected in the policy making.

  • PDF

Experimental Study on Laser-driven Miniflyer for Description of Space Debris with High-speed (빠른 속도의 우주먼지 모사를 위한 레이저기반의 입자가속에 관한 실험적 연구)

  • Baek, Won-Kye;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.120-126
    • /
    • 2013
  • Increasing numbers of space debris around the earth now pose a major threat to satellites as their impact velocity may reach up to several km/s. We use a pulse laser to accelerate a miniflyer for mimicking the space debris. The multi-layer coat on the confined medium is known to promote a higher acceleration. However, it requires some special techniques which take somewhat long time and cost to coat. Instead, we devised a simple concept to coat by the black lacquer paint on a flyer. It shows improvement in the flyer velocity by 1.5-2 times the uncoated, and the resulting velocity reached 1.42km/s with Nd:YAG laser energy under 1.4 joules. The resulting velocity is suitable for satellite vulnerability test for debris impact in the geostationary orbit.

PID Control Characteristic of Thrust Control Valve for Liquid-Propellant Rocket Engine (액체로켓엔진 추력제어벨브 PID 제어특성 분석)

  • Kim Hui-Tae;Lee Joong-Youp;Han Sang-Yeop;Kim Young-Mog;Oh Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.96-103
    • /
    • 2005
  • The main purpose of launch vehicle is to insert satellite into a target orbit safely and correctly. To accomplish the main purpose of launch vehicle, the inserting velocity, inserting angle, and final mass of launch vehicle should be within the allowable range. In general, such requirements are satisfied with applying TCS(Thrust Control System) and TDS(Tank Depletion System), which manage thrust and mixture ratio by controlling propellant flow rate with thrust and mixture ratio control valves. In this study, the control characteristics of thrust and mixture ratio control valve were examined by PID control logic for stable operation of liquid-Propellant rocket engine at on-dosing point. The analysis on the control characteristics of control valves was done with AMESim code and the results from control valve test facility at KARI.

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

Data Processing System for the Geostationary Ocean Color Imager (GOCI) (천리안해양관측위성을 위한 자료 처리 시스템)

  • Yang, Hyun;Yoon, Suk;Han, Hee-Jeong;Heo, Jae-Moo;Park, Young-Je
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.74-79
    • /
    • 2017
  • The Geostationary Ocean Color Imager (GOCI), the world's first ocean color sensor operated in a geostationary orbit, can be utilized to mitigate damages by monitoring marine disasters in real time such as red tides, green algae, sargassum, cold pools, typhoons, and so on. In this paper, we described a methodology and procedure for processing GOCI data in order to maximize its utilization potential. The GOCI data processing procedure is divided into data reception, data processing, and data distribution. The kinds of GOCI data are classified as raw, level 1, and level 2. "Raw" refers to an unstructured data type immediately generated after reception by satellite communications. Level 1 is defined as a radiance data type of two dimensions, generated after radiometric and geometric corrections for raw data. Level 2 indicates an ocean color data type from level-1 data using ocean color algorithms.

Development of LX GNSS On-line Data Processing System Based on the GIPSY-OASIS (GIPSY-OASIS 기반 LX GNSS 온라인 자료처리 시스템 개발)

  • Kim, Hyun-Ho;Ha, Ji-Hyun;Tcha, Dek-Kie
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.555-561
    • /
    • 2014
  • Data processing service via internet help user to get the GNSS data processing result more precise and easily. Thus, online data process system is operated and developed by various research groups and national. But this service is difficult to use in domestic cadastral survey. In this study, we developed the online data processing system for a domestic cadastral survey. This is calculated coordinate using NGII CORS(SUWN) fiducially. And use PPP technique by GIPSY-OASIS. If user choose the observation data which want to calculate the coordinate, then is uploaded to GIPSY-OASIS server through FTP. After upload is complete, server automatically calculate coordinate, and send the report about result using e-mail. And it takes 2 minutes runtime on the basis of the 3 sessions. To verify the result, we used the data on SOUL, JUNJ as compared with notified-coordinate from NGII. As a result, got the difference for east-west 1.4 cm, north-south -1.0 cm, vertical 0.5 cm.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

Characteristics of the Electro-Optical Camera(EOC)

  • Lee, Seung-Hoon;Shim, Hyung-Sik;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.313-318
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of Korea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including Digital Terrain Elevation Map(DTEM). This instrument which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510 ~ 730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable rain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the EOC data users. The modulation transfer function of EOC was measured as greater than 16% at Nyquist frequency over the entire field of view which exceeds its requirement of larger than 10%, The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

  • PDF