• Title/Summary/Keyword: Satellite images

Search Result 1,870, Processing Time 0.03 seconds

Comparative Analysis of Classification Accuracy for Calculating Cropland Areas by using Satellite Images (위성영상별 경지면적 분류 정확도 비교 분석)

  • Jo, Myung-Hee;Kim, Sung-Jae;Kim, Dong-Young;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • Recently many developed countries have used satellite images for classifying cropland areas to reduce time and efforts put into field survey. Korea also has used satellite images for the same purpose since KOMPSAT-2 was successfully launched and operated in 2006, but still far way to go in order to achieve the required accuracy from the products. This study evaluated the accuracy of the calculated croplands by using the objected classification method with various satellite images including ASTER, Spot-5, Rapid eye, Quickbird-2, Geo eye-1. Also, their usability and effectiveness for the cropland survey were verified by comparing with field survey data. As results. Geo eye-1 and Rapid eye showed higher accuracy to calculate the paddy field areas while Geo eye-1 and Quickbird-2 showed higher accuracy to calculate the upland field areas.

Semantic Segmentation Intended Satellite Image Enhancement Method Using Deep Auto Encoders (심층 자동 인코더를 이용한 시맨틱 세그멘테이션용 위성 이미지 향상 방법)

  • K. Dilusha Malintha De Silva;Hyo Jong Lee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.243-252
    • /
    • 2023
  • Satellite imageries are at a greatest importance for land cover examining. Numerous studies have been conducted with satellite images and uses semantic segmentation techniques to extract information which has higher altitude viewpoint. The device which is taking these images must employee wireless communication links to send them to receiving ground stations. Wireless communications from a satellite are inevitably affected due to transmission errors. Evidently images which are being transmitted are distorted because of the information loss. Current semantic segmentation techniques are not made for segmenting distorted images. Traditional image enhancement methods have their own limitations when they are used for satellite images enhancement. This paper proposes an auto-encoder based image pre-enhancing method for satellite images. As a distorted satellite images dataset, images received from a real radio transmitter were used. Training process of the proposed auto-encoder was done by letting it learn to produce a proper approximation of the source image which was sent by the image transmitter. Unlike traditional image enhancing methods, the proposed method was able to provide more applicable image to a segmentation model. Results showed that by using the proposed pre-enhancing technique, segmentation results have been greatly improved. Enhancements made to the aerial images are contributed the correct assessment of land resources.

Moving Vehicle Detection from Single-pass Worldview-3 Imagery Using Spatial Correlation Map

  • Song, Yongjun;Chung, Minkyung;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.439-448
    • /
    • 2022
  • MV (Moving Vehicle) detection using satellite imagery is important for traffic monitoring and provides a wide range of observations. Specifically, MV detection methods utilizing the time lag in single-pass optical satellite images have been studied for detecting MVs from a single set of images. Because of limitations in detecting MVs outside of roads, most previous studies required road information to limit the moving object to cars on the road. However, it is difficult to obtain road information from inaccessible areas. Therefore, this study proposed a new method for detecting MVs regardless of their locations from single-pass optical satellite images without using additional data. WV-3 (Worldview-3) satellite images were used, and a spatial correlation coefficient map was proposed to detect spatial displacement which denotes MVs across two WV-3 MS images. Finally, evaluation was performed through quantitative metrics and visual inspection. The evaluation results revealed that the proposed method can detect MV movements from the single-pass satellite images. On the contrary, misdetected or undetected MVs due to radiometric differences between the images could be identified by visual inspection. The performance of the proposed method can be improved by minimizing radiometric variations and adding conditions that are robust to radiometric differences between the images.

AN ADAPTED METHOD FOR REDUCING CHANGE DETECTION ERRORS DUE TO POINTING DIRECTION SHIFTS OF A SATELLITE SENSOR

  • Jeong, Jong-Hyeok;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.126-129
    • /
    • 2005
  • Change detections is carried out under the assumption that pixel boundaries of geometrically corrected time series satellite images cover the same location. However that assumption can be wrong when shifts in the pointing direction of a satellite sensor occurs. Currently, although the influence of misregistration on landcover change detection has been investigated, there has been little research on the influence of pointing direction shifts of a satellite sensor. In this study, a simple method for reducing the effects of pointing direction shifts of a satellite sensor is proposed: the classification of two ASTER images was carried out using the linear spectral mixture analysis, the two classification results were resampled into a geometrically fixed grid, and then the change detection of the two ASTER images was carried out by comparing the resampled classification results of the two images. The proposed method showed high performance in discriminating between changed areas and unchanged areas by removing the pointing direction shifts of a satellite sensor.

  • PDF

Introduction of Integrated Management of Satellite Imagery Information

  • Chae, Gee-Ju;Yoon, Geun-Won;Hwang, Tae-Hyun;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.197-201
    • /
    • 2002
  • The high prices of satellite images prevent researchers from studying remote sensing and most non-professional people doesn't have the simple and easy solutions for the manipulation of satellite images. "Integrated Management of Satellite Imagery Information" project which will be promoted by ETRI (Electronics and Telecommunications Research Institute) will provide the solutions for the above mentioned problems. We will introduce the archiving center in this study. This includes the data construction, storage, management and distribution. We first review the background for this archiving center and introduce the interior and foreign institutes which archive and distribute satellite images. We review our H/W system and S/W system briefly. Finally, the further service of our project will be suggested. Since we will distribute the satellite images (Landsat, SPOT, JERS, Corona, Kompast-1) and will receive Landsat7 ETM+ in 2003 you, this will help the professional work dealing with the satellite image and attract the non-professional people for simple and easy manipulation solutions of satellite image.

  • PDF

Ground Receiving System for KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Choi, Hae-Jin;Park, Sung-Og;Lee, Dong-Han;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.191-200
    • /
    • 2003
  • Remote sensing division of satellite technology research center (SaTReC) , Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. The developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies for the ground receiving system for high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development from Dec. 1998 until Aug. 2002, the system had been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialized system for KOMPSAT-1. Currently the system is under customization for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.

Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images (고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구)

  • Kim, Yeseul;Lee, Kwang-Jae;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1931-1942
    • /
    • 2021
  • As the utility of an optical satellite image with a high spatial resolution (i.e., fine-scale) has been emphasized, recently, various studies of the land surface monitoring using those have been widely carried out. However, the usefulness of fine-scale satellite images is limited because those are acquired at a low temporal resolution. To compensate for this limitation, the spatiotemporal data fusion can be applied to generate a synthetic image with a high spatio-temporal resolution by fusing multiple satellite images with different spatial and temporal resolutions. Since the spatio-temporal data fusion models have been developed for mid or low spatial resolution satellite images in the previous studies, it is necessary to evaluate the applicability of the developed models to the satellite images with a high spatial resolution. For this, this study evaluated the applicability of the developed spatio-temporal fusion models for KOMPSAT-3A and Sentinel-2 images. Here, an Enhanced Spatial and Temporal Adaptive Fusion Model (ESTARFM) and Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM), which use the different information for prediction, were applied. As a result of this study, it was found that the prediction performance of STGDFM, which combines temporally continuous reflectance values, was better than that of ESTARFM. Particularly, the prediction performance of STGDFM was significantly improved when it is difficult to simultaneously acquire KOMPSAT and Sentinel-2 images at a same date due to the low temporal resolution of KOMPSAT images. From the results of this study, it was confirmed that STGDFM, which has relatively better prediction performance by combining continuous temporal information, can compensate for the limitation to the low revisit time of fine-scale satellite images.

GROUND RECEIVING SYSTEM FOR KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Park, Sung-Og;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.804-809
    • /
    • 2002
  • Remote sensing division of satellite technology research center (SaTReC), Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. Developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies related to the ground receiving system fur high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development, the system has been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialised system for KOMPSAT-1. Currently the system is under customisation for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.

  • PDF

The Application of Satellite Image for Extracting Cultural Grounds of Laver

  • Jo, Myung-Hee;Jo, Yun-Won;Ha, Sung-Ryong;Choi, Kyung-Hwan;Jung, Yun-Jae
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.421-425
    • /
    • 2006
  • This study was to propose the spatial analysis method of extracting the spectral characteristic of cultural grounds of lavers in marine especially ApHae-myeon, ShinAn-gun, JellaNam-do, through using various satellite images. In addition, the information of cultural grounds of laver such as the existence of illegal cultural grounds of laver distribution was extracted through using satellite images and GIS analysis methods. For the further work, the spatial analysis to extract not only cultural grounds of laver business but also artificial facilities in marine will be proposed.

  • PDF

The Studies on Remote Sensing and Their Applications of Islands and Offshore Region Features from IKONOS Images

  • Zhou, Changbao;Huang, Weigen;Zhang, Huaguo;Teng, Junhua;Li, Dongling;Xiao, Qingmei
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.123-125
    • /
    • 2003
  • Satellite IKONOS images are one of important remote sensing data sources as today because of their very high spatial resolution. Their detections for islands and offshore oceanic features with multi-dimension and multi-scales information, specially some small islands, are of great potential. Their application abilities in islands and offshore detections are addressed at the first of the paper. And image processing technologies and the information extracting methodologies are described. Some results on remote sensing of the islands and their nearby object features are shown in details. Discussions and conclusions are carried out simply at the final.

  • PDF