• Title/Summary/Keyword: Satellite imagery analysis

Search Result 353, Processing Time 0.03 seconds

An Implementation of Change Detection System for High-resolution Satellite Imagery using a Floating Window

  • Lim, Young-Jae;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.275-279
    • /
    • 2002
  • Change Detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, Change Detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by low- or middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.

  • PDF

An Analysis of Agricultural Infrastructure Status of North Korea Using Satellite Imagery (인공위성영상을 활용한 북한의 농업생산기반 실태분석)

  • Kim, Kwanho;Lee, Sunghack;Choi, Jinyong
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.45-54
    • /
    • 2014
  • In this study, Agricultural Infrastructures of Shincheon-gun in North Korea are investigated using Kompsat-2 and RapidEye satellite imagery. Target agricultural infrastructures are agricultural landuse, irrigation and drainage canals, dammed pools for irrigation and pumping stations. KOMPSAT-2 satellite imagery are use to investigate agricultural hydraulic structures and agricultural landuse are investigated by RapidEye Imagery. Geometric correction are performed using 28 GCP and QUAC method are used for atmospherical correction in all imagery. ISODATA clustering and naked-eye classification method are used for extracting agricultural hydraulic structures and Object-based analysis is applied to classifying the agricultural landuse. Extraction results of agricultural hydraulic structures and agricultural are presented and we suggest the applicability of satellite imagery to investigate agricultural infrastructures in North Korea.

  • PDF

The Application of Satellite Imagery in Droughts Analysis of Large Area (광역의 가뭄 분석을 위한 위성영상의 활용)

  • Jeong, Soo;Shin, Sha-Chul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.55-62
    • /
    • 2006
  • Droughts have been an important factor in disaster management in Korea because she has been grouped into nations of lack of water. Satellite imagery can be applied to droughts monitoring because it can provide periodic data for large area for long time. This study aims to present a process to analyze droughts in large area using satellite imagery. We estimated evapotranspiration in large area using NDVI data acquired from satellite imagery. For satellite imagery, we dealt with MODIS data operated by NASA. The evapotranspiration estimated from satellite imagery was combined with precipitation data and potential evapotranspiration data to estimate water balances. Using water balances we could analyze droughts effectively in our object area. As the result of this study, we could increase the usability of satellite imagery, especially in droughts analysis.

  • PDF

APPLICATION OF SATELLITE IMAGERY FOR DROUGHTS MONITORING IN LARGE AREA

  • Shin Sha-Chul;Jeong Soo;Kim Kyung-Tak;Kim Joo-Hun;Park Jung-Sool
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.398-401
    • /
    • 2005
  • Droughts have been an important factor in disaster management in Korea because she has been grouped into nations of lack of water. Satellite imagery can be applied to droughts monitoring because it can afford periodic data for large area for long time. This study aims to develop a method to analyze droughts in large area using satellite imagery. We estimated evapotranspiration in large area using NDVI data acquired from satellite imagery. For satellite imagery, we dealt with MODIS data operated by NASA. As the result of this study, we improved the usability of satellite imagery, especially in drought analysis.

  • PDF

Study on Disaster Response Strategies Using Multi-Sensors Satellite Imagery (다종 위성영상을 활용한 재난대응 방안 연구)

  • Jongsoo Park;Dalgeun Lee;Junwoo Lee;Eunji Cheon;Hagyu Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.755-770
    • /
    • 2023
  • Due to recent severe climate change, abnormal weather phenomena, and other factors, the frequency and magnitude of natural disasters are increasing. The need for disaster management using artificial satellites is growing, especially during large-scale disasters due to time and economic constraints. In this study, we have summarized the current status of next-generation medium-sized satellites and microsatellites in operation and under development, as well as trends in satellite imagery analysis techniques using a large volume of satellite imagery driven by the advancement of the space industry. Furthermore, by utilizing satellite imagery, particularly focusing on recent major disasters such as floods, landslides, droughts, and wildfires, we have confirmed how satellite imagery can be employed for damage analysis, thereby establishing its potential for disaster management. Through this study, we have presented satellite development and operational statuses, recent trends in satellite imagery analysis technology, and proposed disaster response strategies that utilize various types of satellite imagery. It was observed that during the stages of disaster progression, the utilization of satellite imagery is more prominent in the response and recovery stages than in the prevention and preparedness stages. In the future, with the availability of diverse imagery, we plan to research the fusion of cutting-edge technologies like artificial intelligence and deep learning, and their applicability for effective disaster management.

Three Dimensional Positioning Accuracy of KOMPSAT-1 Stereo Imagery

  • Jeong, Soo;Kim, Yong-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • KOMPSAT-1 was launched on 21 December, 1999 and the main mission of the satellite is the cartography to provide the imagery from a remote earth view for the production of maps of Korean territory. For this purpose, the satellite has capability to tilt the spacecraft utmost $\pm$45 degrees to acquire stereo satellite imagery in different paths. This study aims to estimate the three dimensional positioning accuracy of stereo satellite imagery from EOC(electro-optical camera), a payload of KOMPSAT-1 satellite. For this purpose, the ground control points and check points were obtained by GPS surveying. The sensor modeling and the adjustment was performed by PCI software installed in KARI (Korea Aerospace Research Institute), which contained mathematical analysis module for KOMPSAT-1 EOC. The study areas were Taejon and Nonsan, placed in the middle part of Korea. As a result of this study, we found that the RMSE(root mean square error) value of three dimensional positioning KOMPST-1 stereo imagery can be less than 1 pixel (6.6 m) if we can use about 10 GCPs(ground control points). Then, a standarrd of FGDC (Federal Geographic Data Committee) of USA was applied to the result to estimate the three dimensional positioning accuracy of KOMPSAT-1 stereo imagery.

Comparison between in situ Survey and Satellite Imagery with Regard to Coastal Habitat Distribution Patterns in Weno, Micronesia (마이크로네시아 웨노섬 연안 서식지 분포의 현장조사와 위성영상 분석법 비교)

  • Kim, Taihun;Choi, Young-Ung;Choi, Jong-Kuk;Kwon, Moon-Sang;Park, Heung-Sik
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.395-405
    • /
    • 2013
  • The aim of this study is to suggest an optimal survey method for coastal habitat monitoring around Weno Island in Chuuk Atoll, Federated States of Micronesia (FSM). This study was carried out to compare and analyze differences between in situ survey (PHOTS) and high spatial satellite imagery (Worldview-2) with regard to the coastal habitat distribution patterns of Weno Island. The in situ field data showed the following coverage of habitat types: sand 42.4%, seagrass 26.1%, algae 14.9%, rubble 8.9%, hard coral 3.5%, soft coral 2.6%, dead coral 1.5%, others 0.1%. The satellite imagery showed the following coverage of habitat types: sand 26.5%, seagrass 23.3%, sand + seagrass 12.3%, coral 18.1%, rubble 19.0%, rock 0.8% (Accuracy 65.2%). According to the visual interpretation of the habitat map by in situ survey, seagrass, sand, coral and rubble distribution were misaligned compared with the satellite imagery. While, the satellite imagery appear to be a plausible results to identify habitat types, it could not classify habitat types under one pixel in images, which in turn overestimated coral and rubble coverage, underestimated algae and sand. The differences appear to arise primarily because of habitat classification scheme, sampling scale and remote sensing reflectance. The implication of these results is that satellite imagery analysis needs to incorporate in situ survey data to accurately identify habitat. We suggest that satellite imagery must correspond with in situ survey in habitat classification and sampling scale. Subsequently habitat sub-segmentation based on the in situ survey data should be applied to satellite imagery.

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

VARIOGRAM-BASED URBAN CHARACTERIZATION USING HIGH RESOLUTION SATELLITE IMAGERY

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.413-416
    • /
    • 2006
  • As even small features can be classified as high resolution imagery, urban remote sensing is regarded as one of the important application fields in time of wide use of the commercialized high resolution satellite imageries. In this study, we have analyzed the variogram properties of high resolution imagery, which was obtained in urban area through the simple modeling and applied to the real image. Based on the grasped variogram characteristics, we have tried to decomposed two high-resolution imagery such as IKONOS and QuickBird reducing window size until the unique variogram that urban feature has come out and then been indexed. Modeling results will be used as the fundamental data for variographic analysis in urban area using high resolution imagery later on. Index map also can be used for determining urban complexity or land-use classification, because the index is influenced by the feature size.

  • PDF

Land Suitability Analysis using GIS and Satellite Imagery

  • Yoo, Hwan-Hee;Kim, Seong-Sam;Ochirbae, Sukhee;Cho, Eun-Rae;Park, Hong-Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.499-505
    • /
    • 2007
  • A method of improving the correctness and confidence in land use classification as well as urban spatial structure analysis of local governments using GIS and satellite imagery is suggested. This study also compares and analyzes LSAS (Land Suitability Assessment System) results using two approaches-LSAS with priority classification, and LSAS using standard estimation factors without priority classification. The conclusions that can be drawn from this study are as follows. First, a method of maintaining up-to-date local government data by updating the LSAS database using high-resolution satellite imagery is suggested. Second, to formulate a scientific and reasonable land use plan from the viewpoint of territory development and urban management, a method of simultaneously processing the two described approaches is suggested. Finally, LSAS was constructed by using varieties of land information such as the cadastral map, the digital topographic map, varieties of thematic maps, and official land price data, and expects to utilize urban management plan establishment widely and effectively through regular data updating and problem resolution of data accuracy.