• Title/Summary/Keyword: Satellite image processing

Search Result 403, Processing Time 0.028 seconds

Requirements Study of a High-Resolution Satellite Image Receiving, Processing and Archiving System

  • Hong, Min-Nyo;Kim, Tae-Jung;Kim, Tag-Gon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.19-24
    • /
    • 1999
  • This paper addresses a new project being carried out at Satellite Technology Research Center. The purpose of the project is to implement a system which receives, processes and stores 1m resolution satellite image transmitted at over 300Mbps down link data rates. In order to develop such a system, a system operational concept design and a requirements study were being carried out As a result of the operational concept design, system objectives, system context and system functions were defined. The system shall be operated according to the philosophy of maximum automation. rapid processing, reliability, integrity, cost effectiveness, and expandability. The system is divided into twelve independent processes and its behavior is modeled by operational scenario, which are combinations of independent processes. Process information and logs generated by the system shall be stored in databases and data received and generated be automatically archived and managed in a hierarchical storage device. The system shall have redundant components in order to be ready for recovering from sudden system failures. This paper will describe in detail the system operational concept design and the system requirements derived from the operational concept design.

  • PDF

GOES-9 Raw Data Acquisition & Image Extraction

  • Kang C. H.;Park D. J.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.582-585
    • /
    • 2005
  • The Geostationary Operational Environmental Satellite (GOES) 9, which is currently located at 155°E geostationary orbits, has transmitted earth observation data acquired by imager to CDA at NOAA. After the acquisition on ground, observation data are corrected on ground and re-transmitted to GOES-9 for the dissemination to users. In this paper, the procedure and result from raw data acquisition and pre-processing for earth observation imagery retrieval from GOES-9 Raw data acquired in Korea at May 2005 are introduced.

  • PDF

Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching

  • Kang, Hyungseok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.545-555
    • /
    • 2020
  • This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.

In-Orbit Test Operational Validation of the COMS Image Data Acquisition and Control System (천리안 송수신자료전처리시스템의 궤도상 시험 운영 검증)

  • Lim, Hyun-Su;Ahn, Sang-Il;Seo, Seok-Bae;Park, Durk-Jong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • The Communication Ocean and Meteorological Satellite(COMS), the first geostationary observation satellite, was successfully launched on June 27th in 2010. The raw data of Meteorological Imager(MI) and Geostationary Ocean Color Imager(GOCI), the main payloads of COMS, is delivered to end-users through the on-ground processing. The COMS Image Data Acquisition and Control System(IDACS) developed by Korea Aerospace Research Institute(KARI) in domestic technologies performs radiometric and geometric corrections to raw data and disseminates pre-processed image data and additional data to end-users through the satellite. Currently the IDACS is in the nominal operations phase after successful in-orbit testing and operates in National Meteorological Satellite Center, Korea Ocean Satellite Center, and Satellite Operations Center, During the in-orbit test period, validations on functionalities and performance IDACS were divided into 1) image data acquisition and transmission, 2) preprocessing of MI and GOCI raw data, and 3) end-user dissemination. This paper presents that IDACS' operational validation results performed during the in-orbit test period after COMS' launch.

Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해색탑재체(GOCI) 데이터의 수신.처리 시스템과 배포 서비스)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Han, Tai-Hyun;Yoo, Hong-Rhyong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • KOSC(Korea Ocean Satellite Center), the primary operational organization for GOCI(Geostationary Ocean Color Imager), was established in KORDI(Korea Ocean Research & Development Institute). For a stable distribution service of GOCI data, various systems were installed at KOSC as follows: GOCI Data Acquisition System, Image Pre-processing System, GOCI Data Processing System, GOCI Data Distribution System, Data Management System, Total Management & Control System and External Data Exchange System. KOSC distributes the GOCI data 8 times to user at 1-hour intervals during the daytime in near-real time according to the distribution policy. Finally, we introduce the KOSC website for users to search, request and download GOCI data.

Effect of the Signal-to-Noise Power Spectra Ratio On MTF compensated EOC images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.202-207
    • /
    • 2002
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are generated and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used in MTF compensation for EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise power spectra ratio is the only factor in the determination of Wiener filter. In this paper, MTF compensation in IRPE at KGS is introduced and MTF compensated EOC 1R images are generated using Wiener filters with various signal-to-noise power spectra ratios. MTF compensated EOC 1R images are correlated with EOC 1R images for observing linearities between them. As a result, the effect of signal-to-noise power spectra ratio is shown on MTF compensated EOC 1R images.

  • PDF

Effect of the Signal-to-Noise Power Spectra Ratio on MTF Compensated EOC Images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are retrieved and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used for MTF compensation of EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise (SNR) power spectra ratio is the only variable which determines the shape of Wiener filter In this paper, MTF compensation in IRPE at KGS is briefly addressed, and MTF compensated EOC images are generated using Wiener filters with various SNR power spectra ratios. MTF compensated EOC images are compared with original EOC 1R images to observe correlations between them. As a result, the effect of SNR power spectra ratio on MTF compensated EOC images is shown.

Land Cover Classification of Satellite Image using SSResUnet Model (SSResUnet 모델을 이용한 위성 영상 토지피복분류)

  • Joohyung Kang;Minsung Kim;Seongjin Kim;Sooyeong Kwak
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.456-463
    • /
    • 2023
  • In this paper, we introduce the SSResUNet network model, which integrates the SPADE structure with the U-Net network model for accurate land cover classification using high-resolution satellite imagery without requiring user intervention. The proposed network possesses the advantage of preserving the spatial characteristics inherent in satellite imagery, rendering it a robust classification model even in intricate environments. Experimental results, obtained through training on KOMPSAT-3A satellite images, exhibit superior performance compared to conventional U-Net and U-Net++ models, showcasing an average Intersection over Union (IoU) of 76.10 and a Dice coefficient of 86.22.

Region Matching of Satellite Images based on Wavelet Transformation (웨이브렛 변환에 기반한 위성 영상의 영역 정합)

  • Park, Jeong-Ho;Cho, Seong-Ik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.14-23
    • /
    • 2005
  • This paper proposes a method for matching two different images, especially satellite images. In the general image matching fields, when an image is compared to other image, they may have different properties on the size, contents, brightness, etc. If there is no noise in each image, in other words, they have identical pixel level and unchanged edges, the image matching method will be simple comparison between two images with pixel by pixel. However, in many applications, most of images to be matched should have much different properties. This paper proposes an efficient method for matching satellite images. This method is to match a raw satellite image with GCP chips. From this we can make a geometrically corrected image. The proposed method is based on wavelet transformation, not required any pre-processing such as histogram equalization, analysis of raw image like the traditional methods.

  • PDF

Development of Very Large Image Data Service System with Web Image Processing Technology (웹 환경에서의 원격탐사기법을 이용한 대용량 영상자료 서비스 시스템개발)

  • 이상익;신상희;최윤수;고준환
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.215-220
    • /
    • 2004
  • Satellite and aerial images are very useful means to monitor ecological and environmental situation. Nowadays more and more officials at Ministry of Environment in Korea need to access and use these image data through networks like internet or intranet. However it is very hard to manage and service these image data through internet or intranet, because of its size problem. In this paper very large image data service system for Ministry of Environment is constructed on web environment using image compression and web based image processing technology. Through this system, not only can officials in Ministry of Environment access and use all the image data but also can achieve several image processing effects on web environment. Moreover officials can retrieve attribute information from vector GIS data that are also integrated with the system.

  • PDF