• Title/Summary/Keyword: Satellite communications

Search Result 1,755, Processing Time 0.025 seconds

Design of Service-adaptive Tactical Data Transmission Protocol for Satellite Communications (위성통신을 위한 서비스 적응적인 전술 데이터 전송 프로토콜 설계)

  • Kim, Sujeong;Lee, Sooho
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.72-79
    • /
    • 2016
  • In this paper, we propose a Service-adaptive Tactical Data Transmission Protocol (STTS) based on Satellite Communications with narrow bandwidth. STTS is designed to provide additional field for scalability and scheduler for reliability of transport stream protocol based on digital broadcasting standard, DVB-S and DVB-S2. It is also verified the effects of lost data packets with narrow bandwidth through the simulator by traffic model and re-transmission of critical data, and checked the design considerations based on STTS system.

Performances Evaluation of Ka Band Communications Transponder for COMS (통신해양기상위성 Ka 대역 통신탑재체 성능검증)

  • Lee, Yong-Min;Lee, Seong-Pal
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • COMS is the one of Korean hybrid geostationary satellite and is scheduled to be launched in 2009 by Arian V into $128^{\circ}$ E longitude. COMS is designed and manufactured for three main objectives which are Communications, Oceanographic, and Meteorological missions. It provides the weather monitoring, ocean monitoring, and Ka band satellite communication services by means of three different payloads. The Ka band communications payload was developed by Electronics and Telecommunications Research Institute (ETRI), and provides not only the digital transmission for the communication services against natural disaster but also digital transmission for the high speed multimedia services. This paper describes the overview of the electrical and mechanical design and measured performances of the Ka band communications transponder flight model (FM) for COMS.

  • PDF

QoS-Oriented Solutions for Satellite Broadcasting Systems

  • Vargas, Aharon;Gerstacker, Wolfgang H.;Breiling, Marco
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.558-567
    • /
    • 2010
  • In this paper, we analyze the capability of satellite broadcasting systems to offer different levels of quality of service (QoS). We focus on the European telecommunications standards institute satellite digital radio and digital video broadcasting satellite handheld (DVB-SH) standards, which have recently been proposed for satellite broadcasting communications. We propose a strategy to provide different levels of QoS for the DVB-SH standard on the basis of an extension of the interleaving scheme, referred to as molded interleaver, which supports low latency service requirements for interactive services. An extensive analysis based on laboratory measurements shows the benefits of this solution. We also present a multilevel coding (MLC) scheme with multistage decoding designed for broadcasting communications as an alternative to the existing standards, where services with different levels of QoS are provided. We present a graphical method based on mutual information for the design and evaluation of MLC systems used for broadcasting communications. Extensive simulations for a typical satellite channel show the viability of the proposed MLC scheme. Finally, we introduce multidimensional constellations in the proposed MLC scheme in order to increase the number of different protection levels.

Launch and Early Orbit Phase Simulations by using the KOMPSAT Simulator

  • Lee, Sanguk;Park, Wan-Sik;Lee, Byoung-sun;Lee, Ho-Jin;Park, Hanjun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.33-36
    • /
    • 1999
  • The KOMPSAT, which is scheduled to be launched by Taurus launch vehicle in late November of 1999, will be in a sun-synchronous orbit with an altitude of 685km, eccentricity of 0.001, inclination of 98deg and local time of ascending node of 10:50 a.m. Electronics and Telecommunications Research Institute and Daewoo Heavy Industry had jointly developed a KOMPSAT Simulator as a component of the KOMPSAT Mission Control Element. The MCE had been delivered to Korea Aerospace Research Institute for the KOMPSAT ground operation. It is being used for training of KOMPSAT ground station personnel. Each of satellite subsystems and space environment were mathematically modeled in the simulator. To verify the overall function of KOMPSAT simulator, a Launch and Early Orbit Phase(LEOP) operation simulations have been performed. The simulator had been verified through various tests such as functional level test, subsystem test, interface test, system test, and acceptance test. In this paper, simulation results for LEOP operations to verify flight software adapted into simulator, satellite subsystem models and environment models are presented.

  • PDF

An Analysis of Baseband Packet Switching Scheme for Multi-Beam Satellite Communications (다중빔 위성통신을 위한 기저대역 패킷 스위칭 기법 분석)

  • Kim, Won-Ho;Lee, Yong-Min;Ku, Bon-Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • In this paper, we present an efficient design scheme based on analysis of design requirements and considerations of baseband packet switch for S-band satellite/terrestrial hybrid multi-beam satellite communication systems. To establish design requirements and considerations, we analyze required functions of baseband packet switch, specifications of multi-beam satellite communications, communication services and performance requirements. And also we analyze and compare conventional layer-2 and layer-3 satellite baseband packet switching techniques, packet switching protocols and packet switch architectures, to apply from analyzed results. Finally, we propose a hardware design scheme of MPEG based layer-2 baseband packet switch using analyzed results.

A Study of Public Test-bed Operation for Satellite Communications via COMS (천리안 위성을 활용한 위성 통신용 공공 테스트베드 운용에 관한 연구)

  • Wang, Do-Huy;Oh, Deock-Gil
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.12-16
    • /
    • 2013
  • This paper we introduce operated public test-bed satellite system configuration for satellite communications and usage for services via COMS(Communication, Ocean and Meteorological Satellite). According to trial public test-bed operation, the broadband multimedia services are expected to be available at the next generation VSAT services due to the increasing of Ka-band utilization. In addition, UHD broadcasting services via satellite is expected to improve the universal accessibility of broadcast services.

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

An Efficient Resource Allocation Scheme For An Integrated Satellite/Terrestrial Networks (위성/지상 겸용 망 내 간섭을 고려한 최적 자원 할당 방식)

  • Park, Unhee;Kim, Hee Wook;Oh, Dae-Sub;Jang, Dae-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.298-306
    • /
    • 2015
  • In this paper, we propose an efficient resource allocation scheme for the integrated satellite/terrestrial networks. The proposed scheme is a frequency sharing technique to mitigate the inter-component interferences which can be generated between a satellite beam and terrestrial cells that are operated in the same frequency. The proposed dynamic resource allocation scheme can mitigate the total inter-component interference by optimizing the total transmission power and it can expect a result of which can lead to an increase in capacity. In such a system, the interference situation can be affected by the distributed traffic demands or up/down link communications environments. In this point of view, we evaluate the performance of the total consumed power, the amount of inter-component interference with respect to different traffic distributions and interference environments between the satellite beam and terrestrial systems.

The link performance analysis of the satellite communications system using satellite network simulator (모의위성망을 활용한 위성통신체계의 링크성능 분석)

  • Jang, Jae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.441-450
    • /
    • 2007
  • In this paper, it is proposed the link performance analysis results using SNRAT(Satellite Network Resource Allocation & Analysis Tool) and verified the anticipated results by satellite communication network simulator. A communication satellite cannot be corrected or fixed for the error in orbit operation after launching unlike the ground operation equipment and has a restricted operation life. So, it is important to make possible to use satellite communications in the proper time. It is expected the link BER(Bit Error Rate), throughput and AJ(Anti-Jamming) performance using SNRAT tool before launching. And it is verified the performance of the repeaters and ground equipment specification using the satellite network simulator and is extracted the optimum operational scenarios through the tests of various network operational plans.

A Study on Network Operation Structure and DataLink Protocol for Interworking of Ground Network ALL-IP at Next-Military Satellite Communication (차기군위성통신에서 지상망 ALL-IP 연동을 위한 네트워크 운용구조 및 데이터링크 프로토콜 연구)

  • Lee, Changyoung;Kang, Kyungran;Shim, Yong-hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.826-841
    • /
    • 2018
  • The military satellite communication of ROK military, ANASIS is designed for analog data such as voice and streaming data. ANASIS cannot fully support ALL-IP communications due to its long propagation delay. The next generation satellite communication system is being designed to overcome the limitation. Next generation satellite communications system considers both high-speed and low-speed networks to support various operating environment. The low-speed satellite supports both broadband and narrow-band communication. This network works as the infrastructure for of wide-area internetworking over multiple AS's in the terrestrial network. It requires minimum satellite frequency and minimum power and works without PEP and router. In this paper, we propose a network operation structure to enable the inter-operation between high and low-speed satellite networks. In addition, we propose a data link protocol for low speed satellite networks.