• Title/Summary/Keyword: Satellite based augmentation system receiver

Search Result 26, Processing Time 0.022 seconds

Estimation of the Relative GPS/Galileo Satellite and Receiver IFBs using a Kalman Filter in a Regional Receiver Network (지역적 수신기 네트워크에서 Kalman 필터를 사용한 상대적인 GPS/Galileo 위성 및 수신기 IFB 추정)

  • Heesung Kim;Minhyuk Son
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.309-317
    • /
    • 2024
  • Satellite and receiver Inter-Frequency Biases (IFBs) should be estimated or calibrated by pre-defined values for generating precise navigation messages and augmentation data in satellite navigation systems or the augmentation system. In this paper, a Kalman filter is designed and implemented to estimate the ionospheric delay and satellite/receiver IFBs using a regional receiver network. First, an ionospheric model and its filter parameter is defined based on previous studies. Second, a measurement model for estimating the relative satellite/receiver IFBs without any constraints is proposed. Third, a procedure for ensuring the continuity of estimation is proposed in this paper. To verify the performance of the designed filter, six Continuously Operating Reference Stations (CORSs) are selected. Finally, the stability and accuracy of satellite/receiver IFB estimation are analyzed.

Design of DGNSS Software RSIM's Data Receive Module for G-III GNSS Receiver in SBAS Reference Station (SBAS 기준국용 G-III 수신기 연동을 위한 DGNSS SW RSIM의 수신 모듈 설계)

  • Jang, Wonseok;Park, Sanghyun;Seo, Kiyeol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.297-300
    • /
    • 2016
  • The typical Differential Global Navigation Satellite System service of South Korea is the Ground Based Differential GNSS service. South Korea building the Satellite-Based Augmentation System for GNSS to expand the Differential GNSS service. The satellite-based differential GNSS serive is called the SBAS(Satellite Based Augmentation System). The SBAS reference station on ground should be installed to operate the SBAS service alike the ground based augmentation system. That SBAS reference station can be installed with ground based DGNSS reference station. To make the SBAS reference station combined with the ground based DGNSS reference station, DGNSS system should be connected to NovAtel's G-III receiver. In this paper, the DGNSS software reference station's software module architecture was changed and G-III interface module was designed to use the G-III receiver.

  • PDF

Analysis of MSAS Ionosphere Correction Messages and the Effect of Equatorial Anomaly (MSAS 전리층 보정정보 및 적도변이에 의한 영향 분석)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.2
    • /
    • pp.12-20
    • /
    • 2008
  • Japanese MSAS (Multi-functional Satellite Augmentation System) satellites have been transmitting GPS satellite orbit and ionosphere correction information since 2005. MSAS coverage includes Far East Asia, and it can improve the accuracy and integrity of GPS position solutions in Korea. This research analyzed the ionosphere correction information from the MSAS ionosphere correction data. The ionosphere delay data observed by a dual frequency receiver is compared with the MSAS ionosphere correction data. The variation of MSAS GIVE values are analyzed in connection with the equatorial anomaly and ionosphere scintillation.

  • PDF

Navigation Performance Analysis of KASS Test Signals

  • Daehee Won;Eunsung Lee;Chulhee Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • This paper presents the analysis results of navigation performance of Korea Augmentation Satellite System (KASS) test signals. Performance analysis was performed with Global Positioning System (GPS) and Satellite Based Augmentation System (SBAS) signals received from 7 KASS reference stations. And the performances were analyzed in terms of the signal strength, statistics for each SBAS message, coverage of ionospheric correction, accuracy, integrity, continuity, and availability. In addition, the navigation solutions provided by commercial receiver was analyzed and the performance experienced by general users was presented. Lastly, directions for further improvement of the KASS system were addressed. These performance analysis results can be used to confirm the feasibility of utilizing KASS in user applications.

Preliminary Design of GBAS Onboard Test Equipment

  • Jeong, Myeong-Sook;Ko, Wan-Jin;Bae, Joong Won;Jun, Hyang Sig
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • When the ground subsystem of Ground Based Augmentation System(GBAS) is installed at the airport, the functions and performance of subsystem should be evaluated through ground and flight testing at the pre-commissioning phase. In the case of GBAS flight testing, it can be conducted by the existing flight check aircraft, but the GBAS ground testing requires the development of specially customized equipment to perform the ground testing. Therefore, this paper describes the preliminary design of GBAS onboard test equipment which can be independently used for the GBAS ground testing and flight testing on a car and an aircraft.

Analysis of the Requirements and Design of KASS Measuring Equipment (KASS 탑재측정장비 요구사항 및 설계방안 분석)

  • Kim, Woo-Ri-Ul;Hong, Gyo-Young;Kang, Hee Won;Choi, Kwang-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.544-548
    • /
    • 2017
  • The International Civil Aviation Organization is recommending the use of SBAS on all aircraft by 2025 to urge PBN implementation around the world. As part of this, Korea is also developing KASS, a Korean SBAS. ICAO grants authority to the host nation aviation authority in the certification and operation of SBAS. The KASS system will be verified after detailed system design, fabrication and installation. In this paper, flight test parameters are derived from the flight inspection regulations and the configuration of the on - board measurement equipment for measuring the parameters has been proposed.

DOP Analysis of Ground Based Augmentation System by the Position of Transmitter (송신기 위치에 따른 GBAS 시스템의 DOP 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • In this paper, we describe on the position error of GBAS. In reality, there are many sources which make errors into the calculation of receiver position. It is well known that the DOP of GBAS is an important position error source and is dependent on the numbers and positions of the transmitters. Here, we develop an algorism to calculate the DOP of the GNSS with 2-line transmitters into Korean area. The result is useful to predict the DOP of the positions where transmitters and receivers are located.

Required Navigation Performance Implementation of Mission Equipment Package for Korean Utility Helicopter (한국형 가동헬기 임무탑재장비 요구항법성능 구현)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Oh, Woo-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.798-804
    • /
    • 2011
  • A number of navigation improvements are envisaged : Differential GPS - WAAS, LAAS, and Performance Based Navigation. The GPS receiver verifies the integrity(usability) of the signals received from the GPS constellation through a process called receiver autonomous integrity monitoring(RAIM) to determine if a satellite is providing corrupted information. This paper describe the RAIM function and Performance-Based Navigation implementation of Mission Equipment Package(MEP) for Korean Utility Helicopter.

Analysis on the Initialization Time of Each Mode using OmniSTAR HP (OmniSTAR HP의 측위모드별 수렴시간 분석)

  • Lee, In-Su;Park, Byung-Woon;Song, June-Sol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.75-82
    • /
    • 2011
  • In this study, author analyzed the overview and the convergence time of Fixed solutions (<15cm) of OmniSTAR, one of SBAS(Satellite Based Augmentation System) as WADGPS (Wide Area Differential GPS), which can compensate the drawbacks of the existed GNSS (Global Navigation Satellite System) that require the expensive receiver and is impossible to position in case of the radio interference in urban sometimes. As a result, the test shows that the less than 15cm 3D standard deviation converges in 39 minutes at Dynamic mode and 28 minutes at Static mode. It is expected that we can apply OmniSTAR to a variety of fields such as LBS(Location Based Service), mobile positioning, and the geo-spatial information industry that does not necessarily guarantee the high position accuracy.

European Augmentation Service - a GNSS Monitoring in South Europe Region

  • Gaglione, Salvatore;Pacifico, Armando;Vultaggio, Mario
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.165-170
    • /
    • 2006
  • In the Civil Aviation field, the international trend (through ICAO, EUROCONTROL) is to adopt one positioning system that allows to follow more flight phases. This will allow to release themselves by ground installations and optimize the traffic flows following the aRea Navigation (RNAV) concept. In order to realize this goal the European Scientific Community are focusing on Augmentation Systems based on Satellite infrastructure (SBAS - Satellite Based Augmentation System) and on Ground based ones (GBAS - Ground Based Augmentation System). The goal of this work is to present some results on SBAS and GBAS performances. Regarding SBAS, the Department of Applied Sciences of Parthenope University, after the acquisition of a Novatel OEM4 SBAS receiver has created a monitoring station that reflect as much as possible a standardized measure environment for EGNOS Data Collection Network (EDCN), established by Eurocontrol. The Department of Applied Science has decided to carry out a own monitoring survey to verify the performance of EGNOS that can be achieved in South Europe region, a zone not very covered by official (EDCN) monitoring network. Regarding GBAS, we started from a data set of measurements carried out at the GBAS of Milan-Linate airport where we work on a ground installation (GMS - Ground Monitoring Station) that supervises the GBAS signal and that represent, for our purposes, the Aircraft subsystem. So the set of data collected is to be considered in RTK mode and after the measures session we processed them with the software PEGASUS v 4.11. Both experiences give us the possibility to evaluate the GNSS1 performance that can be achieved.

  • PDF