This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.187-187
/
2015
인공위성을 이용한 토양수분의 측정은, 범지구적인 물순환 분석에 있어서, 수문학적인 인자들의 시공간적인 변화를 예측, 분석하는데 있어 가장 효율적인 방법으로 제안되어왔다. 현재 국/내 외 적으로 사용하는 토양수분 위성은 Soil Moisture and Ocean Salinity (SMOS), Advanced SCATerometer (ASCAT)이 많이 사용되고 있으며, 더불어 일본에서 최근에 발사 된 Advanced Microwave Scanning Radiomter 2 (AMSR2) 센서를 통한 토양수분도 데이터도 적극 활용 되고 있다. 각 위성은 토양수분을 산출 하는 알고리즘, 파장대 그리고 위성 통과 시간 등이 각기 다르므로, 이러한 위성의 데이터를 사용하기 위해서는 지점 데이터와의 검증이 필수적으로 필요하게 된다. 이에따라 본 연구에서는 위성 데이터와 Global Land Data Assimilation System (GLDAS)와의 비교를 통해 각 위성데이터의 동아시아 지역에서의 효용성을 평가하였다. 동아시아의 건조한 지역에서는 SMOS가 가장 좋은 토양수분 데이터 결과를 보여주었으며, 다른 많은 지역에서는 ASCAT이 우세한 결과를 보여주었다. 하지만 한반도 지역의 특정 지역에서는 AMSR2의 토양수분 값이 ASCAT을 뛰어넘는 좋은 결과를 보여주는 결과가 도출되었다. 추가적으로, SMOS의 경우 Radio Frequency Interference (RFI)의 영향으로 한반도지역 토양수분을 측정하는 것에는 많은 무리가 있음을 알 수 있었다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.160-160
/
2017
본 연구는 앙상블 칼만필터(Ensemble Kalman Filter)를 통해 인공위성 기반 토양수분 자료를 수문모형에 동화하여 단위 격자에 대한 수문인자를 산출하고자 한다. 수문모형은 Variable Infiltration Capacity(VIC) model을 대상으로 수행하였으며, 시범 유역으로는 소양강댐 유역을 선정하였다. 입력자료는 2007년 이후 8년간 자료를 수집하였으며, 2007-2010년 관측 유량 자료를 사용하여 모형을 보정하고, 2011-2014년 자료를 통하여 검증하였다. Isolated-Speciation Particle Swarm Optimization(ISPSO) 기법을 통하여 매개변수를 추정하였고, 보정기간 뿐 아니라 검증 기간에 대해서도 높은 모형효율성계수를 얻을 수 있었다. VIC 모형 자료 동화 대상 자료로는 AMSR2 위성 토양 수분 자료, 지상관측 토양수분 보간자료 및 조건부합성방법을 통한 위성/지점 융합 토양수분을 선정하였다. 위성 토양 수분 자료는 값을 과대 추정하는 경향이 있었으며, 지상관측 보간 자료는 유량이 큰 사상에 대한 첨두 유량을 과소 추정하는 경향을 보였다. 인공위성자료와 지상 자료를 합성한 조건부합성기법 토양수분자료는 더 정확한 추정이 가능하여 모의의 정확도가 향상되었다. 본 연구를 통해서 미계측 유역에 대해 격자별 수문기상인자 정보를 제공할 수 있으며, 데이터베이스를 구축하여 다양한 수문분석에 기초자료로 활용될 수 있을 것이다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.301-301
/
2018
본 연구에서는 위성 기반 토양수분 자료를 수문모형에 자료동화하여 격자 단위에서 수문기상인자를 산출하고 그 정확성을 평가하였다. 수문모형으로는 Variable Infiltration Capacity(VIC) model을 선정하여 국내 주요 8개 댐 유역에 구축하였으며, 입력자료는 2008년 이후 10년간 자료를 수집하였으며, 2008-2012년의 관측 유량 자료를 사용하여 모형을 보정하였다. 모형의 보정을 위해 Isolated-Speciation Particle Swarm Optimization(ISPSO) 기법을 적용하여 매개변수를 추정하였고, 2013-2017년의 관측유량 자료를 통하여 모형의 성능을 검증하였다. VIC 모형에 자료 동화한 토양수분 자료는 AMSR2 위성 토양 수분 자료와 지상관측 토양수분 자료를 합성한 자료를 사용하였으며, 인공위성자료와 지상 자료를 조건부합성기법으로 합성한 토양수분자료는 각 격자별 토양수분을 더 정확히 산정하여 자료동화시 모형의 모의 정확도가 향상되는 경향을 보였다. 본 연구결과는 지상관측자료를 통해 보정된 위성관측 토양수분자료를 자료동화하여 수문모형의 정확도를 향상시키고, 미계측 유역에 대한 향상된 수문기상인자 정보를 제공함으로써 다양한 수문분석의 기초자료로 활용될 수 있을 것으로 기대된다.
Eun-Hee Kim;Youngsoon Jo;Hyoung-Wook Chun;Ji-Hyun Ha;Seungbum Kim
Atmosphere
/
v.33
no.1
/
pp.33-47
/
2023
In this study, for the application of observation errors to the Korean Integrated Model (KIM) to utilize the Constellation Observing System for Meteorology, Ionosphere & Climate-2 (COSMIC-2) new satellites, the observation errors were diagnosed based on the Desroziers method using the cost function in the process of variational data assimilation. We calculated observation errors for all observational species being utilized for KIM and compared with their relative values. The observation error of the calculated the Global Navigation Satellite System Radio Occultation (GNSS RO) was about six times smaller than that of other satellites. In order to balance with other satellites, we conducted two experiments in which the GNSS RO data expanded by about twice the observation error. The performance of the analysis field was significantly improved in the tropics, where the COSMIC-2 data are more available, and in the Southern Hemisphere, where the influence of GNSS RO data is significantly greater. In particular, the prediction performance of the Southern Hemisphere was improved by doubling the observation error in global region, rather than doubling the COSMIC-2 data only in areas with high density, which seems to have been balanced with other observations.
Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristicsthrough the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 m2/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedentstudy that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.
Monitoring the global Gross Primary Pproduction (GPP) is relevant to understanding the global carbon cycle and evaluating the effects of interannual climate variation on food and fiber production. GPP, the flux of carbon into ecosystems via photosynthetic assimilation, is an important variable in the global carbon cycle and a key process in land surface-atmosphere interactions. The Moderate-resolution Imaging Spectroradiometer (MODIS) is one of the primary global monitoring sensors. MODIS GPP has some of the problems that have been proven in several studies. Therefore this study was to solve the regional mismatch that occurs when using the MODIS GPP global product over Korea. To solve this problem, we estimated each of the GPP component variables separately to improve the GPP estimates. We compared our GPP estimates with validation GPP data to assess their accuracy. For all sites, the correlation was close with high significance ($R^2=0.8164$, $RMSE=0.6126g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$, $bias=-0.0271g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$). We also compared our results to those of other models. The component variables tended to be either over- or under-estimated when compared to those in other studies over the Korean peninsula, although the estimated GPP was better. The results of this study will likely improve carbon cycle modeling by capturing finer patterns with an integrated method of remote sensing.
Park, Rae Seol;Han, Kyung Man;Song, Chul Han;Park, Mi Eun;Lee, So Jin;Hong, Song You;Kim, Jhoon;Woo, Jung-Hun
Journal of Korean Society for Atmospheric Environment
/
v.29
no.4
/
pp.407-438
/
2013
Current status and future direction of air quality modeling for monitoring and forecasting air quality in East Asia were discussed in this paper. An integrated air quality modeling system, combining (1) emission processing and modeling, (2) meteorological model simulation, (3) chemistry-transport model (CTM) simulation, (4) ground-based and satellite-retrieved observations, and (5) data assimilation, was introduced. Also, the strategies for future development of the integrated air quality modeling system in East Asia was discussed in this paper. In particular, it was emphasized that the successful use and development of the air quality modeling system should depend on the active applications of the data sets from incumbent and upcoming LEO/GEO (Low Earth Orbit/Geostationary Earth Orbit) satellites. This is particularly true, since Korea government successfully launched Geostationary Ocean Color Imager (GOCI) in June, 2010 and has another plan to launch Geostationary Environmental Monitoring Spectrometer (GEMS) in 2018, in order to monitor the air quality and emissions in/around the Korean peninsula as well as over East Asia.
Soil moisture is essential information for meteorological and hydrological analyses. To date, many efforts have been made to achieve the two goals for soil moisture data, i.e., the improvement of accuracy and resolution, which is very challenging. We presented an ensemble downscaling method for quality improvement of gridded soil moisture data in terms of the accuracy and the spatial resolution by the integration of BMA (Bayesian model averaging) and ATPRK (area-to-point regression kriging). In the experiments, the BMA ensemble showed a 22% better accuracy than the data sets from ESA CCI (European Space Agency-Climate Change Initiative), ERA5 (ECMWF Reanalysis 5), and GLDAS (Global Land Data Assimilation System) in terms of RMSE (root mean square error). Also, the ATPRK downscaling could enhance the spatial resolution from 0.25° to 0.05° while preserving the improved accuracy and the spatial pattern of the BMA ensemble, without under- or over-estimation. The quality-improved data sets can contribute to a variety of local and regional applications related to soil moisture, such as agriculture, forest, hydrology, and meteorology. Because the ensemble downscaling method can be applied to the other land surface variables such as temperature, humidity, precipitation, and evapotranspiration, it can be a viable option to complement the accuracy and the spatial resolution of satellite images and numerical models.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.100-100
/
2019
최근 대기 중 미세먼지의 농도가 높은 일수가 급증하면서, 미세먼지를 저감하고자 하는 연구가 활발히 이루어지고 있다. 미세먼지는 주로 자동차 혹은 공장 등 인간 활동에 의한 오염물질 배출에 의해 발생하는 것으로 알려져 있으며, 태양복사에너지, 토양수분, 강우, 풍속 등의 수문기상학적 인자에 의해 발생, 이동, 소멸의 과정을 거친다. 현재 우리나라에서는 미세먼지 농도를 관측하기 위해 지점 기반의 관측소를 운영하고 있으며, 관측소가 위치하지 않은 지역의 미세먼지 농도는 선형 보간법 등을 활용한 내삽 기법을 통해 제공하고 있다. 그러나 미세먼지 농도는 다양한 수문기상인자들의 영향에 의한 차이가 크게 나타나기 때문에 지점 기반의 자료로는 해당 지역의 미세먼지 농도를 추정하는 데 어려움이 많다. 본 연구에서는 미세먼지의 공간적인 분포를 추정하고자 MODerate resolution Imaging Spectroradiometer (MODIS) 에어로졸 자료와 Global Land Data Assimilation System (GLDAS) 수문기상인자를 활용하여 미세먼지 농도에 영향을 주는 것으로 판단되는 다양한 수문기상인자들과의 상관성을 분석하였다. 미세먼지와 각 인자간의 상관성을 분석하여 높은 상관성을 갖는 수문기상인자들을 도출하고 최적의 선형회귀분석 모델을 구축하기 위해 베이지안 모델 평균(Bayesian Model Averaging, BMA)을 사용하였으며, 지점 데이터와의 비교를 통해 활용성을 검증하였다. 전체적으로 수문기상인자를 사용한 선형회귀분석 결과에서는 미세먼지농도 변화의 경향을 반영하고 있는 것을 확인할 수 있었으나, 계절별, 지역별 등 대기 특성을 고려하지 않아 각 기간의 급격한 농도 변화를 감지하기에 어려움이 있었다. 이러한 연구를 바탕으로 수문기상인자와 미세먼지 농도의 패턴이 더욱 정확히 분석된다면, 미세먼지 농도 모니터링과 정확한 예보 시스템의 구축에 효과적으로 활용 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.