• Title/Summary/Keyword: Satellite assimilation

Search Result 70, Processing Time 0.03 seconds

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.

An inter-comparison of satellite-based soil moisture over East Asia (동아시아 지역 토양수분 산출 위성 평가)

  • Kim, Hyunglok;SunWoo, Wooyeon;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.187-187
    • /
    • 2015
  • 인공위성을 이용한 토양수분의 측정은, 범지구적인 물순환 분석에 있어서, 수문학적인 인자들의 시공간적인 변화를 예측, 분석하는데 있어 가장 효율적인 방법으로 제안되어왔다. 현재 국/내 외 적으로 사용하는 토양수분 위성은 Soil Moisture and Ocean Salinity (SMOS), Advanced SCATerometer (ASCAT)이 많이 사용되고 있으며, 더불어 일본에서 최근에 발사 된 Advanced Microwave Scanning Radiomter 2 (AMSR2) 센서를 통한 토양수분도 데이터도 적극 활용 되고 있다. 각 위성은 토양수분을 산출 하는 알고리즘, 파장대 그리고 위성 통과 시간 등이 각기 다르므로, 이러한 위성의 데이터를 사용하기 위해서는 지점 데이터와의 검증이 필수적으로 필요하게 된다. 이에따라 본 연구에서는 위성 데이터와 Global Land Data Assimilation System (GLDAS)와의 비교를 통해 각 위성데이터의 동아시아 지역에서의 효용성을 평가하였다. 동아시아의 건조한 지역에서는 SMOS가 가장 좋은 토양수분 데이터 결과를 보여주었으며, 다른 많은 지역에서는 ASCAT이 우세한 결과를 보여주었다. 하지만 한반도 지역의 특정 지역에서는 AMSR2의 토양수분 값이 ASCAT을 뛰어넘는 좋은 결과를 보여주는 결과가 도출되었다. 추가적으로, SMOS의 경우 Radio Frequency Interference (RFI)의 영향으로 한반도지역 토양수분을 측정하는 것에는 많은 무리가 있음을 알 수 있었다.

  • PDF

Assimilation of Satellite Based Soil Moisture With Ensemble Kalman Filter (앙상블 칼만필터 기반 위성 토양수분 자료 동화 기법)

  • Park, Jeongha;Lee, Jaehyeon;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.160-160
    • /
    • 2017
  • 본 연구는 앙상블 칼만필터(Ensemble Kalman Filter)를 통해 인공위성 기반 토양수분 자료를 수문모형에 동화하여 단위 격자에 대한 수문인자를 산출하고자 한다. 수문모형은 Variable Infiltration Capacity(VIC) model을 대상으로 수행하였으며, 시범 유역으로는 소양강댐 유역을 선정하였다. 입력자료는 2007년 이후 8년간 자료를 수집하였으며, 2007-2010년 관측 유량 자료를 사용하여 모형을 보정하고, 2011-2014년 자료를 통하여 검증하였다. Isolated-Speciation Particle Swarm Optimization(ISPSO) 기법을 통하여 매개변수를 추정하였고, 보정기간 뿐 아니라 검증 기간에 대해서도 높은 모형효율성계수를 얻을 수 있었다. VIC 모형 자료 동화 대상 자료로는 AMSR2 위성 토양 수분 자료, 지상관측 토양수분 보간자료 및 조건부합성방법을 통한 위성/지점 융합 토양수분을 선정하였다. 위성 토양 수분 자료는 값을 과대 추정하는 경향이 있었으며, 지상관측 보간 자료는 유량이 큰 사상에 대한 첨두 유량을 과소 추정하는 경향을 보였다. 인공위성자료와 지상 자료를 합성한 조건부합성기법 토양수분자료는 더 정확한 추정이 가능하여 모의의 정확도가 향상되었다. 본 연구를 통해서 미계측 유역에 대해 격자별 수문기상인자 정보를 제공할 수 있으며, 데이터베이스를 구축하여 다양한 수문분석에 기초자료로 활용될 수 있을 것이다.

  • PDF

Application of the Satellite Based Soil Moisture Data Assimilation Technique with Ensemble Kalman Filter in Korean Dam Basin (국내 주요 댐 유역에 대한 앙상블 칼만필터 기반 위성 토양수분 자료 동화 기법의 적용)

  • Lee, Jaehyeon;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.301-301
    • /
    • 2018
  • 본 연구에서는 위성 기반 토양수분 자료를 수문모형에 자료동화하여 격자 단위에서 수문기상인자를 산출하고 그 정확성을 평가하였다. 수문모형으로는 Variable Infiltration Capacity(VIC) model을 선정하여 국내 주요 8개 댐 유역에 구축하였으며, 입력자료는 2008년 이후 10년간 자료를 수집하였으며, 2008-2012년의 관측 유량 자료를 사용하여 모형을 보정하였다. 모형의 보정을 위해 Isolated-Speciation Particle Swarm Optimization(ISPSO) 기법을 적용하여 매개변수를 추정하였고, 2013-2017년의 관측유량 자료를 통하여 모형의 성능을 검증하였다. VIC 모형에 자료 동화한 토양수분 자료는 AMSR2 위성 토양 수분 자료와 지상관측 토양수분 자료를 합성한 자료를 사용하였으며, 인공위성자료와 지상 자료를 조건부합성기법으로 합성한 토양수분자료는 각 격자별 토양수분을 더 정확히 산정하여 자료동화시 모형의 모의 정확도가 향상되는 경향을 보였다. 본 연구결과는 지상관측자료를 통해 보정된 위성관측 토양수분자료를 자료동화하여 수문모형의 정확도를 향상시키고, 미계측 유역에 대한 향상된 수문기상인자 정보를 제공함으로써 다양한 수문분석의 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

A Study on Improvement of the Observation Error for Optimal Utilization of COSMIC-2 GNSS RO Data (COSMIC-2 GNSS RO 자료 활용을 위한 관측오차 개선 연구)

  • Eun-Hee Kim;Youngsoon Jo;Hyoung-Wook Chun;Ji-Hyun Ha;Seungbum Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.33-47
    • /
    • 2023
  • In this study, for the application of observation errors to the Korean Integrated Model (KIM) to utilize the Constellation Observing System for Meteorology, Ionosphere & Climate-2 (COSMIC-2) new satellites, the observation errors were diagnosed based on the Desroziers method using the cost function in the process of variational data assimilation. We calculated observation errors for all observational species being utilized for KIM and compared with their relative values. The observation error of the calculated the Global Navigation Satellite System Radio Occultation (GNSS RO) was about six times smaller than that of other satellites. In order to balance with other satellites, we conducted two experiments in which the GNSS RO data expanded by about twice the observation error. The performance of the analysis field was significantly improved in the tropics, where the COSMIC-2 data are more available, and in the Southern Hemisphere, where the influence of GNSS RO data is significantly greater. In particular, the prediction performance of the Southern Hemisphere was improved by doubling the observation error in global region, rather than doubling the COSMIC-2 data only in areas with high density, which seems to have been balanced with other observations.

The Characteristics of Submarine Groundwater Discharge in the Coastal Area of Nakdong River Basin (낙동강 유역의 연안 해저지하수 유출특성에 관한 연구)

  • Kim, Daesun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1589-1597
    • /
    • 2021
  • Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristicsthrough the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 m2/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedentstudy that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.

Adjustment of A Simplified Satellite-Based Algorithm for Gross Primary Production Estimation Over Korea

  • Pi, Kyoung-Jin;Han, Kyung-Soo;Kim, In-Hwan;Lee, Tae-Yoon;Jo, Jae-Il
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.275-291
    • /
    • 2013
  • Monitoring the global Gross Primary Pproduction (GPP) is relevant to understanding the global carbon cycle and evaluating the effects of interannual climate variation on food and fiber production. GPP, the flux of carbon into ecosystems via photosynthetic assimilation, is an important variable in the global carbon cycle and a key process in land surface-atmosphere interactions. The Moderate-resolution Imaging Spectroradiometer (MODIS) is one of the primary global monitoring sensors. MODIS GPP has some of the problems that have been proven in several studies. Therefore this study was to solve the regional mismatch that occurs when using the MODIS GPP global product over Korea. To solve this problem, we estimated each of the GPP component variables separately to improve the GPP estimates. We compared our GPP estimates with validation GPP data to assess their accuracy. For all sites, the correlation was close with high significance ($R^2=0.8164$, $RMSE=0.6126g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$, $bias=-0.0271g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$). We also compared our results to those of other models. The component variables tended to be either over- or under-estimated when compared to those in other studies over the Korean peninsula, although the estimated GPP was better. The results of this study will likely improve carbon cycle modeling by capturing finer patterns with an integrated method of remote sensing.

Current Status and Development of Modeling Techniques for Forecasting and Monitoring of Air Quality over East Asia (동아시아 대기질 예보 및 감시를 위한 모델링 기술의 현황과 발전 방향)

  • Park, Rae Seol;Han, Kyung Man;Song, Chul Han;Park, Mi Eun;Lee, So Jin;Hong, Song You;Kim, Jhoon;Woo, Jung-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.407-438
    • /
    • 2013
  • Current status and future direction of air quality modeling for monitoring and forecasting air quality in East Asia were discussed in this paper. An integrated air quality modeling system, combining (1) emission processing and modeling, (2) meteorological model simulation, (3) chemistry-transport model (CTM) simulation, (4) ground-based and satellite-retrieved observations, and (5) data assimilation, was introduced. Also, the strategies for future development of the integrated air quality modeling system in East Asia was discussed in this paper. In particular, it was emphasized that the successful use and development of the air quality modeling system should depend on the active applications of the data sets from incumbent and upcoming LEO/GEO (Low Earth Orbit/Geostationary Earth Orbit) satellites. This is particularly true, since Korea government successfully launched Geostationary Ocean Color Imager (GOCI) in June, 2010 and has another plan to launch Geostationary Environmental Monitoring Spectrometer (GEMS) in 2018, in order to monitor the air quality and emissions in/around the Korean peninsula as well as over East Asia.

Ensemble Downscaling of Soil Moisture Data Using BMA and ATPRK

  • Youn, Youjeong;Kim, Kwangjin;Chung, Chu-Yong;Park, No-Wook;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.587-607
    • /
    • 2020
  • Soil moisture is essential information for meteorological and hydrological analyses. To date, many efforts have been made to achieve the two goals for soil moisture data, i.e., the improvement of accuracy and resolution, which is very challenging. We presented an ensemble downscaling method for quality improvement of gridded soil moisture data in terms of the accuracy and the spatial resolution by the integration of BMA (Bayesian model averaging) and ATPRK (area-to-point regression kriging). In the experiments, the BMA ensemble showed a 22% better accuracy than the data sets from ESA CCI (European Space Agency-Climate Change Initiative), ERA5 (ECMWF Reanalysis 5), and GLDAS (Global Land Data Assimilation System) in terms of RMSE (root mean square error). Also, the ATPRK downscaling could enhance the spatial resolution from 0.25° to 0.05° while preserving the improved accuracy and the spatial pattern of the BMA ensemble, without under- or over-estimation. The quality-improved data sets can contribute to a variety of local and regional applications related to soil moisture, such as agriculture, forest, hydrology, and meteorology. Because the ensemble downscaling method can be applied to the other land surface variables such as temperature, humidity, precipitation, and evapotranspiration, it can be a viable option to complement the accuracy and the spatial resolution of satellite images and numerical models.

Hydrometeorological Drivers of Particulate Matter Using Satellite and Reanalysis Data (인공위성 및 재분석 자료를 이용한 미세먼지 농도와 수문기상인자의 상관성 분석)

  • Lee, Seul Chan;Jeong, Jae Hwan;Choi, Min Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.100-100
    • /
    • 2019
  • 최근 대기 중 미세먼지의 농도가 높은 일수가 급증하면서, 미세먼지를 저감하고자 하는 연구가 활발히 이루어지고 있다. 미세먼지는 주로 자동차 혹은 공장 등 인간 활동에 의한 오염물질 배출에 의해 발생하는 것으로 알려져 있으며, 태양복사에너지, 토양수분, 강우, 풍속 등의 수문기상학적 인자에 의해 발생, 이동, 소멸의 과정을 거친다. 현재 우리나라에서는 미세먼지 농도를 관측하기 위해 지점 기반의 관측소를 운영하고 있으며, 관측소가 위치하지 않은 지역의 미세먼지 농도는 선형 보간법 등을 활용한 내삽 기법을 통해 제공하고 있다. 그러나 미세먼지 농도는 다양한 수문기상인자들의 영향에 의한 차이가 크게 나타나기 때문에 지점 기반의 자료로는 해당 지역의 미세먼지 농도를 추정하는 데 어려움이 많다. 본 연구에서는 미세먼지의 공간적인 분포를 추정하고자 MODerate resolution Imaging Spectroradiometer (MODIS) 에어로졸 자료와 Global Land Data Assimilation System (GLDAS) 수문기상인자를 활용하여 미세먼지 농도에 영향을 주는 것으로 판단되는 다양한 수문기상인자들과의 상관성을 분석하였다. 미세먼지와 각 인자간의 상관성을 분석하여 높은 상관성을 갖는 수문기상인자들을 도출하고 최적의 선형회귀분석 모델을 구축하기 위해 베이지안 모델 평균(Bayesian Model Averaging, BMA)을 사용하였으며, 지점 데이터와의 비교를 통해 활용성을 검증하였다. 전체적으로 수문기상인자를 사용한 선형회귀분석 결과에서는 미세먼지농도 변화의 경향을 반영하고 있는 것을 확인할 수 있었으나, 계절별, 지역별 등 대기 특성을 고려하지 않아 각 기간의 급격한 농도 변화를 감지하기에 어려움이 있었다. 이러한 연구를 바탕으로 수문기상인자와 미세먼지 농도의 패턴이 더욱 정확히 분석된다면, 미세먼지 농도 모니터링과 정확한 예보 시스템의 구축에 효과적으로 활용 될 것으로 기대된다.

  • PDF