• Title/Summary/Keyword: Satellite Orbit Modeling

Search Result 63, Processing Time 0.032 seconds

Extended Kalman Filter Based Relative State Estimation for Satellites in Formation Flying (확장형 칼만 필터를 이용한 인공위성 편대비행 상대 상태 추정)

  • Lee, Young-Gu;Bang, Hyo-Choong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.962-969
    • /
    • 2007
  • In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality, however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of $J_2$ geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the effect of the $J_2$ geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

Orbit Determination Error Analysis for the KOMPSAT (다목적 실용위성의 궤도 결정 오차 분석)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.437-447
    • /
    • 1998
  • Orbit error analysis was performed for the GPS navigation solutions and ground station tracking data of the KOMPSAT (Korea Multi-Purpose SATellite), which will be launched in 1999 for cartography of Korean peninsula as main mission. A least square method was used for the orbit determination and prediction error simulation including tracking data noises and dynamic modeling errors. It was found that a short-term periodic orbit determination error was caused by the tracking data noise and dominant orbit prediction error was caused by solar flux uncertainty.

  • PDF

Mathematical Modeling and Performance Analysis of Polar Orbit Mobile Satellite Communication System Utilizing Both Neighboring and Diagonal Link (대각 위성간 링크를 허용하는 극궤도 이동위성통신 시스템의 수학적 모델링 및 성능분석)

  • Yang, Hyuk;Kim, Doug-Nyun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.17-29
    • /
    • 1999
  • Inter-Satellite Links(ISL) technique in the Polar Orbit Satellite plays the key role in the communication methods in IRIDIUM system, where the ISL is commonly established between neighbor satellites. The system has major drawbacks in maintaining the multi-hopping link connectivities while the satellite nodes are communicating each other. The proposed system is newly designed to allow diagonal link connections between the satellites and shows how it does improve the performance. The optimized number of satellites in the terms of their altitudes and visible distance are calculated. The traffic parameters and the probability of blocking are analyzed to compare the visible satellite link method with the neighbor link method mathermatically.

  • PDF

COMS GTO Injection Propellant Estimation using Monte-Carlo Method (몬테카를로방법을 이용한 천리안위성 궤도전이 소요추진제량 추정에 관한 연구)

  • Park, Eungsik;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • Geostationary satellites use the thruster in order to control the location change and mount the suitable amount of liquid propellant depending on the operating lifetime. Therefore the lifetime of the geostationary satellite depends on the residual propellant amount and the precise residual propellant gauging is very important for the mitigation of economic losses arised from premature removal of satellite from its orbit, satellites replacement planning, slot management and so on. The propellant gauging methods of geostationary satellite are mostly used PVT method, thermal mass method and bookkeeping method. In this paper, we analysis the modeling of COMS(Communication, Ocean & Meteorological Satellite) bipropellant system for bookkeeping method and COMS GTO(Geostationary Transfer Orbit) injection propellant estimation using Monte-Carlo method.

Fading channel modeling for non-geostationary orbit mobile satellite communication systems (비정지궤도 이동위성통신시스템에서의 페이딩 채널 모델링)

  • You, Moon-Hee;Park, Se-Kyoung;Lee, Soo-In
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.12-18
    • /
    • 1998
  • In non-geostationary orbit(NGSO) satellite communication links, satellite's elevation angle at terminal is changed continuously because of the satellite movement relative to earth surface. Therefore the characteristics of the fade-effected signal received by a terminal from a NGSO satellite is also varied continuously even if the terminal is operated at fixed location. In this paper, we determine a general statistic model for the fading characteristics over NGSO satellite communication links and set up the parameters of the fading model in terms of the elevation angle according to various propagation environment and find the parameter values using the data of fading margin for commercial NGSO mobile satellite communication systems. And the fading charateristics for each environment are analyzed using this model. These results can be applied to develop the compensation algorithm and to analyze the performance of the transmission schemes for NGSO mobile satellite communication systems.

  • PDF

THE SIMPLE METHOD OF GEOMETRIC RECONSTRUCTION FOR SPOT IMAGES

  • JUNG HYUNG-SUP;KIM SANG-WAN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.205-207
    • /
    • 2004
  • The simple method of the geometric reconstruction of satellite linear pushbroom images is investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbital parameters, longitude of the ascending $node(\omega),$ inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. We suppose that four orbital parameters and satellite attitude angles are exactly acquired. Then, in order to refine model, the given attitude angles and orbital parameters is not changed, but time-independent four parameters associated with LOS(Line Of Sight) vector is updated. A pair of SPOT-5 images has been used for validation of proposed method. Two GCPs acquired by GPS survey is used to controlling the LOS vector. The results are that the RMSE of 16 checking points are about 4.5m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image taken by pushbroom camera.

  • PDF

Dynamic Modeling and Control of Flexible Space Structures

  • Chae, Jang-Soo;Park, Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1912-1921
    • /
    • 2003
  • This paper presents a global mode modeling of space structures and a control scheme from the practical point of view. Since the size of the satellite has become bigger and the accuracy of attitude control more strictly required, it is necessary to consider the structural flexibility of the spacecraft. Although it is well known that the finite element (FE) model can accurately model the flexibility of the satellite, there are associated problems : FE model has the system matrix with high order and does not provide any physical insights, and is available only after all structural features have been decided. Therefore, it is almost impossible to design attitude and orbit controller using FE model unless the structural features are in place. In order to deal with this problem, the control design scheme with the global mode (GM) model is suggested. This paper describes a flexible structure modeling and three-axis controller design process and demonstrates the adequate performance of the design with respect to the maneuverability by applying it to a large flexible spacecraft model.

Simulation Modeling of Range and Acceleration Measurement Instruments for Satellite Formation Flying (편대비행 위성용 거리 및 가속도 관측기 시뮬레이션 모델링)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.75-83
    • /
    • 2005
  • NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, which consists of two co-orbiting low altitude satellites, is to measure the Earth gravity field with unprecedented accuracy. Its key instruments include inter-satellite ranging systems and three-axis accelerometers. For the preliminary design and requirements analysis, extensive instrument simulation models are developed. These modeling techniques and orbit-gravity field estimation techniques are described.

Target Positioning in Remote Area Using Strip Sensor Modeling of SPOT Imagery (SPOT 위성영상의 스트립 센서모델링을 이용한 비접근지역 위치결정 연구)

  • Kim, Man-Jo;Hwang, Chi-Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.155-160
    • /
    • 2012
  • In this paper, a strip modeling method is developed for the acquisition of target positions in remote area and validated using the imagery of SPOT satellite. This method utilizes the parameters given in header files and constructs a camera model without ground control points. In most cases, the root mean squared error of check points is less than pixel size with one ground control point. The model error of reference image is evaluated using ground control points and used to remove the model error of target images acquired along the same satellite orbit, which enables one to calculate target positions in remote area where no ground control points are available.

A Preliminary Study of Near Real-time Precision Satellite Orbit Determination (준 실시간 정밀 위성궤도결정을 위한 이론적 고찰)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.693-700
    • /
    • 2009
  • For real-time precise GPS data processing such as a long baseline network RTK (Real-Time Kinematic) survey, PPP (Precise Point Positioning) and monitoring of ionospheric/tropospheric delays, it is necessary to guarantee accuracy comparable to IGS (International GNSS Service) precise orbit with no latency. As a preliminary study for determining near real-time satellite orbits, the general procedures of satellite orbit determination, especially the dynamic approach, were studied. In addition, the transformation between terrestrial and inertial reference frames was tested to integrate acceleration. The IAU 1976/1980 precession/nutation model showed a consistency of 0.05 mas with IAU 2000A model. Since the IAU 2000A model has a large number of nutation components, it took more time to compute the transformation matrix. The classical method with IAU 2000A model was two times faster than the NRO (non-rotating origin) approach, while there is no practical difference between two transformation matrices.