• Title/Summary/Keyword: Satellite Observation

Search Result 945, Processing Time 0.028 seconds

Spatial Distribution of Urban Heat and Pollution Islands using Remote Sensing and Private Automated Meteorological Observation System Data -Focused on Busan Metropolitan City, Korea- (위성영상과 민간자동관측시스템 자료를 활용한 도시열섬과 도시오염섬의 공간 분포 특성 - 부산광역시를 대상으로 -)

  • HWANG, Hee-Soo;KANG, Jung Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.100-119
    • /
    • 2020
  • During recent years, the heat environment and particulate matter (PM10) have become serious environmental problems, as increases in heat waves due to rising global temperature interact with weakening atmospheric wind speeds. There exist urban heat islands and urban pollution islands with higher temperatures and air pollution concentrations than other areas. However, few studies have examined these issues together because of a lack of micro-scale data, which can be constructed from spatial data. Today, with the help of satellite images and big data collected by private telecommunication companies, detailed spatial distribution analyses are possible. Therefore, this study aimed to examine the spatial distribution patterns of urban heat islands and urban pollution islands within Busan Metropolitan City and to compare the distributions of the two phenomena. In this study, the land surface temperature of Landsat 8 satellite images, air temperature and particulate matter concentration data derived from a private automated meteorological observation system were gridded in 30m × 30m units, and spatial analysis was performed. Analysis showed that simultaneous zones of urban heat islands and urban pollution islands included some vulnerable residential areas and industrial areas. The political migration areas such as Seo-dong and Bansong-dong, representative vulnerable residential areas in Busan, were included in the co-occurring areas. The areas have a high density of buildings and poor ventilation, most of whose residents are vulnerable to heat waves and air pollution; thus, these areas must be considered first when establishing related policies. In the industrial areas included in the co-occurring areas, concrete or asphalt concrete-based impervious surfaces accounted for an absolute majority, and not only was the proportion of vegetation insufficient, there was also considerable vehicular traffic. A hot-spot analysis examining the reliability of the analysis confirmed that more than 99.96% of the regions corresponded to hot-spot areas at a 99% confidence level.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

Control Policy for the Land Remote Sensing Industry (미국(美國)의 지상원격탐사(地上遠隔探査) 통제제탁(統制制度))

  • Suh, Young-Duk
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.20 no.1
    • /
    • pp.87-107
    • /
    • 2005
  • Land Remote Sensing' is defined as the science (and to some extent, art) of acquiring information about the Earth's surface without actually being in contact with it. Narrowly speaking, this is done by sensing and recording reflected or emitted energy and processing, analyzing, and applying that information. Remote sensing technology was initially developed with certain purposes in mind ie. military and environmental observation. However, after 1970s, as these high-technologies were taught to private industries, remote sensing began to be more commercialized. Recently, we are witnessing a 0.61-meter high-resolution satellite image on a free market. While privatization of land remote sensing has enabled one to use this information for disaster prevention, map creation, resource exploration and more, it can also create serious threat to a sensed nation's national security, if such high resolution images fall into a hostile group ie. terrorists. The United States, a leading nation for land remote sensing technology, has been preparing and developing legislative control measures against the remote sensing industry, and has successfully created various policies to do so. Through the National Oceanic and Atmospheric Administration's authority under the Land Remote Sensing Policy Act, the US can restrict sensing and recording of resolution of 0.5 meter or better, and prohibit distributing/circulating any images for the first 24 hours. In 1994, Presidential Decision Directive 23 ordered a 'Shutter Control' policy that details heightened level of restriction from sensing to commercializing such sensitive data. The Directive 23 was even more strengthened in 2003 when the Congress passed US Commercial Remote Sensing Policy. These policies allow Secretary of Defense and Secretary of State to set up guidelines in authorizing land remote sensing, and to limit sensing and distributing satellite images in the name of the national security - US government can use the civilian remote sensing systems when needed for the national security purpose. The fact that the world's leading aerospace technology country acknowledged the magnitude of land remote sensing in the context of national security, and it has made and is making much effort to create necessary legislative measures to control the powerful technology gives much suggestions to our divided Korean peninsula. We, too, must continue working on the Korea National Space Development Act and laws to develop the necessary policies to ensure not only the development of space industry, but also to ensure the national security.

  • PDF

Temporal and Spatial Variability of the Middle and Lower Tropospheric Temperatures from MSU and ECMWF (MSU와 ECMWF에서 유도된 중간 및 하부 대류권 온도의 시 ${\cdot}$ 공간 변동)

  • Yoo, Jung-Moon;Lee, Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.503-524
    • /
    • 2000
  • Intercomparisons between four kinds of data have been done to estimate the accuracy of satellite observations and model reanalysis for middle and lower tropospheric thermal state over regional oceans. The data include the Microwave Sounding Units (MSU) Channel 2 (Ch2) brightness temperatures of NOAA satellites and the vertically weighted corresponding temperature of ECMWF GCM (1980-93). The satellite data for midtropospheric temperatures are MSU2 (1980-98) in nadir direction and SC2 (1980-97) in multiple scans, and for lower tropospheric temperature SC2R (1980-97). MSU2 was derived in this study while SC2 and SC2R were described in Spencer and Christy (1992a, 1992b). Temporal correlations between the above data were high (r${\ge}$0.90) in the middle and high latitudes, but low(r${\sim}$0.65) over the low latitude and more convective regions. Their values with SC2R which included the noises due to hydrometeors and surface emission were conspicuously low. The reanalysis shows higher correlation with SC2 than with MSU2 partially because of the hydrometeors screening. SC2R in monthly climatological anomalies was more sensitive to surface thermal condition in northern hemisphere than MSU2 or SC2. The first EOF mode for the monthly mean data of MSU and ECMWF shows annual cycle over most regions except the tropics. The mode in MSU2 over the Pacific suggests the east-west dipole due to the Walker circulation, but this tendency is not clear in other data. In the first and second modes for the Ch2 anomalies over most regions, the MSU and ECMWF data commonly indicate interannual variability due to El Ni${\tilde{n}$o and La Ni${\tilde{n}$a. The substantial disagreement between observations and model reanalysis occurs over the equatorial upwelling region of the western Pacific, suggesting uncertainties in the model parameterization of atmosphere-ocean interaction.

  • PDF

DEVELOPMENT OF A LYMAN-α IMAGING SOLAR TELESCOPE FOR THE SATELLITE (인공위성 탑재용 자외선 태양카메라(LIST) 개발)

  • Jang, M.;Oh, H.S.;Rim, C.S.;Park, J.S.;Kim, J.S.;Son, D.;Lee, H.S.;Kim, S.J.;Lee, D.H.;Kim, S.S.;Kim, K.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.329-352
    • /
    • 2005
  • Long term observations of full-disk Lyman-o irradiance have been made by the instruments on various satellites. In addition, several sounding rockets dating back to the 1950s and up through the present have measured the $Lyman-{\alpha}$ irradiance. Previous full disk $Lyman-{\alpha}$ images of the sun have been very interesting and useful scientifically, but have been only five-minute 'snapshots' obtained on sounding rocket flights. All of these observations to date have been snapshots, with no time resolution to observe changes in the chromospheric structure as a result of the evolving magnetic field, and its effect on the Lyman-o intensity. The $Lyman-{\alpha}$ Imaging Solar Telescope(LIST) can provide a unique opportunity for the study of the sun in the $Lyman-{\alpha}$ region with the high time and spatial resolution for the first time. Up to the 2nd year development, the preliminary design of the optics, mechanical structure and electronics system has been completed. Also the mechanical structure analysis, thermal analysis were performed and the material for the structure was chosen as a result of these analyses. And the test plan and the verification matrix were decided. The operation systems, technical and scientific operation, were studied and finally decided. Those are the technical operation, mechanical working modes for the observation and safety, the scientific operation and the process of the acquired data. The basic techniques acquired through the development of satellite based solar telescope are essential for the construction of space environment forecast system in the future. The techniques which we developed through this study, like mechanical, optical and data processing techniques, could be applied extensively not only to the process of the future production of flight models of this kind, but also to the related industries. Also, we can utilize the scientific achievements which are obtained throughout the project And these can be utilized to build a high resolution photometric detectors for military and commercial purposes. It is also believed that we will be able to apply several acquired techniques for the development of the Korean satellite projects in the future.

Spatial Distribution of Pigment Concentration Around the East Korean Warm Current Region Derived from Satellite Data - Satellite Observation in May 1980 - (위성원격탐사에 의한 동한난류 주변 해역의 색소농도 공간적 분포 -1980년 5월 관측을 중심으로 -)

  • Kim Sang Woo;Saitoh Sei-ich;Kim Dong Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.265-272
    • /
    • 2002
  • Spatial distribution of Phytoplankton Pigment Concentration (PPC) and Sea Surface Temperature (SST) around the East Korean Warm Current (EKWC) was described, using both Coastal Zone Color Scanner (CZCS) images and Advanced Very High Resolution Radiometer (AVHRR) images in May, 1980. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw (normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC (>2.0 mg/m^3) area appeared in the CZCS and AVHRR images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters alonB western thermal front of the warm streamer of the EKWC. In this region, the highest PPC occurred by a combination of the high absorption of the phytoplankton (443 nm) and highest reflectance of suspended materials (550 nm). Another high PPC ($\simeq$$6\;mg/m^3$) appeared in the warm water overlay region inside warm streamer. High phytoplankton pigment concentration of this region was corresponding to the short wavelength of 443 nm, which represented phytoplankton absorption of the CZCS image.

Change Detection at the Nakdong Estuary Delta Using Satellite Image and GIS (위성영상과 GIS를 이용한 낙동강하구 지형변화탐지)

  • Oh, Che-Young;Park, So-Young;Choi, Chul-Uong;Jeon, Sung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • Nakdong Estuary Delta plays various roles of worldwide habitat for migratory birds and a sand supplier to Haewoondae Beach and Gwanganri, which are tourist attractions of Busan. In this study, long-term topographical changes of Nakdong Estuary (Jinwoo Islet, Sinja Islet, Doyodeung, Dadae Beach) coast were detected and interpreted. Through the analysis of 34 years' satellite images, it was found out that a part in between front side and back side of Jinwoo Islet increased, Sinja Islet was divided into two belts in 1970, and has formed an islet since the 1980s and extended westward. Due to the rapid development of small islets in front of Baekhabdeung since 1990s, Doyodeung formed in the late 1990s and is still growing. To make coastal map of Nakdong Estuary area, 13 images, of which the tide level was $99{\pm}13cm$, from the 112 Landsat images of the period from 1975 to 2009 were selected to section into water zone and land zone using NDV. And the rates of coastal line change such as MATLAB EPR(End Point Rate) and LRR(Linear Regression Rate) were calculated using DSAS 4.0(Digital Shoreline Analysis System). Through detecting topographical changes, EPR showed that the front(south) and back side(north) of Jinwoo Islet moved southward at -0.93~2.56m/yr, and changes in costal line and area of Jinwoo Islet were low and stable. The front and backside of Sinja Islet moved northward at 1~4m/yr, whereas the west side of Sinja Islet was stable at 2~3m/yr and east side of Sinja Islet moved northward at 10m/yr or faster. The front and back side of Doyodeung moved northward at 18~27m/yr, causing the increase of area, while the coastal line of Dadae Beach moved westward at 7m/yr, causing the expansion of the beach. LRR also demonstrated a similar trend to EPR. Although analysis of satellite images and GIS could enabled detection of topographical changes and quantitative analysis of natural phenomena, we found that continuous observation of natural phenomena and various analytical methods are required.

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009 (AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월)

  • Yang, Chan-Su;Na, Jae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2009
  • The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.

Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data (MODIS와 TOMS자료를 이용한 2001년 동북아시아 지역의 대기 에어로졸 모니터링)

  • 이권호;홍천상;김영준
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.77-89
    • /
    • 2004
  • The spatial and temporal variations of aerosol optical depth (AOD) over Northeast Asia regions have special importance in the aerosol research for estimation of aerosol radiative forcing parameters and climate change. Aerosol optical and physical properties (AOD and ${\AA}$ngstrom parameter) have been investigated by using Moderate Resolution Imaging Spectroradiometer (MODIS) and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) to estimate aerosol characteristics over the study region during 2001. Additionally, aerosol characteristics over the Korean peninsular during Aerosol Characteristic Experiment in Asia (ACE-Asia) Intensive Observation Period (IOP) have been investigated by using satellite observations. The results showed that the daily-observed aerosol data indicate seasonal variations with relatively higher aerosol loading in the spring and very low during the winter. The typical Asian dust case showed higher AOD (>0.7) with lower Angstrom exponent (<0.5) and higher AI (>0.5) that is mainly due to the composition of coarse particles in the springtime. Mean AOD for 2001 at 4 different places showed 0.65$\pm$0.37 at Beijing, 0.31$\pm$0.19 at Gosan, 0.54$\pm$0.26 at Seoul, and 0.38$\pm$0.19 at Kwangju, respectively. An interesting result was found in the present study that polluted aerosol events with small size dominated-aerosol loading around the Korean peninsular are sometimes observed. The origin of these polluted aerosols was thought to East China. Aerosol distribution from satellite images and trajectory results shows the proof of aerosol transport. Therefore, aerosol monitoring using satellite data is very useful.