• Title/Summary/Keyword: Satellite Navigation System

Search Result 855, Processing Time 0.026 seconds

GPS Jamming Techniques and Anti-Jamming GPS Technologies (GPS 재밍 기법과 항재밍 GPS 기술)

  • Jo, In-hwa;Kim, Hyeong-suk;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.573-575
    • /
    • 2015
  • Positioning system using satellite GPS is used at positioning, navigation, acquisition time information and other various field and taking an important part precision guided weapon such as missile. But commercial code(C/A code) do not have ECCM. Therefore commercial code is vulnerable to various jamming techniques and noise jamming from near station can attack even the encrypted military code(P code) GPS. In this paper, GPS jamming techniques, North Korean GPS jamming cases and anti-jamming GP S technologies are surveyed and described.

  • PDF

Local Signal Design for Binary Offset Carrier Signals (이진 옵셋 반송파 신호에 알맞은 국소신호 설계)

  • Kim, Hongdeuk;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.845-849
    • /
    • 2013
  • In this paper, we design local signals to remove side-peaks in the binary offset carrier (BOC) autocorrelation. Specifically, we first investigate why local signals of the conventional schemes are applicable to either sine or cosine-phased BOC signals, and then, design local signals applicable to both sine and cosine-phased BOC signals. Finally, we obtain two partial correlations and propose a correlation function with no side-peak via a combination of the partial correlations. From numerical results, we demonstrate that the designed local signals are applicable to both sine and cosine-phased BOC signals and can remove side-peaks completely.

Analysis of Ionospheric Spatial Gradient Over Korea Using GPS Measurements (GPS를 이용한 한반도 상공 전리층 기울기 변화 분석)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.391-398
    • /
    • 2009
  • Variations of mean ionospheric spatial gradient over Korea are analyzed in order to support GNSS (Global Navigation Satellite System) augmentation systems and integrity monitering systems. A software for analyzing the ionospheric spatial gradient is developed using an ionospheric plate model. Daily and annual variations of ionospheric delay and spatial gradient are analyzed using GPS data in 2003 and 2005 respectively. The ionospheric delays and spatial gradients in 2003 were larger than 2005. Also, the south-north gradient, about -1.0mm/km, is nearly two times larger than the east-west gradient. The annual ionospheric spatial gradients over Korea is varied within 2mm/km.

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

Identification of structural displacements utilizing concurrent robotic total station and GNSS measurements

  • Pehlivan, Huseyin
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.411-420
    • /
    • 2022
  • Monitoring large structures is a significant issue involving public health on which new studies are constantly carried out. Although the Global Navigation Satellite System (GNSS) is the most preferable method for measuring structural displacements, total stations, one of the classical geodetic instruments, are the first devices that come to mind in cases that require complementary usage and auxiliary measurement methods. In this study, the relative displacements of the structural movements of a tower were determined using robotic total stations (RTS) and GNSS. Two GNSS receivers and two RTS observations were carried out simultaneously for 10 hours under normal weather conditions. The spectral analysis of the GNSS data was performed using fast Fourier transform (FFT), and while the dominant modal frequencies were determined, the total station data were balanced with the least-squares technique, and the position and position errors were calculated for each measurement epoch. It has been observed that low-frequency structural movements can be determined by both methods. This result shows that total station measurements are a helpful alternative method for monitoring large structures in situations where measurements are not possible due to the basic handicaps of GNSS or where it is necessary to determine displacements with short observations.

Analysis of Drone Surveying Using a Low-Cost PPK Kit (PPK Kit를 활용한 드론 측량 분석)

  • Park, Junho;Kim, Taerim
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • With the popularization of drones and the ease of use of the Global Navigation Satellite System (GNSS), drone photogrammetry for terrain information has been widely used. Drone photogrammetry enables the realization of high-accuracy three-dimensional topography for the entire area with less effort and time compared to the past direct survey using GNSS or total station. From 3-D topographic data, various topographical analysis is possible. To improve the accuracy of drone photogrammetry, direct GCP surveying in the field is essential, and the numbers and reasonable positioning of GCPs are very important. In the case of beaches or tidal flats on the west coast of Korea, the numbers and location of GCPs are important factors in efficient drone photogrammetry because of the size of the area, difficulties of movement, and the risk from tides. If the RTK (Real-time kinematic) or PPK (Post-processed kinematic) method is used, the increased accuracy of the drone's location enables high-accuracy photogrammetry with a small number of GCPs. This study presents an efficient drone photogrammetry method in terms of time and economy by comparing and analyzing the results of drone photogrammetry using Non-PPK with low-cost PPK-Kit, based on the tests of various numbers and locations of GCPs in the university field including various slopes and structures like coastal terrain.

GNSS-Based PHC Pile Cutting Position Sensing Methodology (GNSS 기반 PHC 파일 절단위치 센싱 방법론에 관한 연구)

  • Cho, Se-Hyun;Yoou, Geon-Hee;Kim, Jun-Sang;Lee, Jun Ho;Hur, Je;Kim, Young Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.387-388
    • /
    • 2023
  • PHC pile head cutting is an essential work in pile foundation construction. However, since the work has labor-intensive characteristics, there are problems such as productivity and safety. So in previous study PHC pile one-cutting head cutting automation equipment was developed to solve this problem. However, it has been investigated as a limitation that checking the cutting position of the PHC pile can be challenging in place where a rotary laser leveler cannot irradiate cutting position, as the sensing unit of the developed automated equipment utilizes an optical method. Therefore, the objective of this study is to delvelop a GNSS-based methodology for sensing the cutting position of PHC piles to overcome the limitations of the optical method and to examine its feasibility for field application. If the proposed methodology is applied to the construction site, it is expected that the convenience and productivity of the PHC pile cutting position sensing work will be improved.

  • PDF

Deep neural network based seafloor sediment mapping using bathymetric features of MBES multifrequency

  • Khomsin;Mukhtasor;Suntoyo;Danar Guruh Pratomo
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.101-114
    • /
    • 2024
  • Seafloor sediment mapping is an essential research topic in shallow coastal waters, especially in port development, benthic habitat mapping, and underwater communications. The seafloor sediments can be interpreted by collecting sediment samples directly in the field using a grab sampler or corer. Another method is optical, especially using underwater cameras and videos. Both methods each have weaknesses in terms of area coverage (mechanic) and accurate positioning (optic). The latest technology used to overcome it is the acoustic method (echosounder) with Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) positioning. Therefore, in this study will propose the classification of seafloor sediments in coastal waters using acoustic method that is Multibeam Echosounder (MBES) multi-frequency with five frequency (200 kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz). In this study, the deep neural network (DNN) used the bathymetric multi frequency, bathymetric difference inters frequencies, and bathymetric features from 5 (five) frequencies as input layer and 4 (four) sediment types in 74 (seventy-four) sample sediment as output layer to make a seafloor sediment map. Results of sediment mapping using the DNN method show an overall accuracy of 71.6% (significant) and a kappa coefficient of 0.59 (moderate). The distribution of seafloor sediment in the study area is mainly silt (41.6%), followed by clayey sand (36.6%), sandy silt (14.2%), and silty sand (7.5%).

Analysis for Accuracies of Position Fix by GPS in Kusan Area (군산지역에서의 GPS측위정도 해석)

  • LEE Won-Woo;SHIN Hyeong-Il;LEE Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.250-257
    • /
    • 1993
  • The Global Positioning System(GPS) is a worldwide radio navigation system based on satellite technology. Signal availability and accuracy of GPS are subject to change due to an incomplete constellation and operational test activities. In order to analyze the signal availability and accuracy of GPS, we made an experiment on this system in Kunsan during April 6, 7, 9, 10, 1992. The results obtained are summarized as follows: 1. It was possible to avail the GPS system almost 24 hours per day, but sometimes it was impossible to obtain the GPS signal 2 or 3 times per day and its total time was at the most an hour. 2. By using satellite almanac, we also could calculate PDOP(HDOP) and forecast signal availability. And the mean positional error was $37.9{\sim}73.6m$ and standard deviation was $37.4{\sim}133.1m$. The positional error almost coincided with PDOP(HDOP). 3. The mean positional error of 3D was less than that of 2D. And the altitude error in 3D was about $56{\sim}74m$ and its standard deviation was about $65{\sim}93m$.

  • PDF

Development of Near Real Time GNSS Precipitable Water Vapor System Using Precise Point Positioning (정밀절대측위를 이용한 준실시간 GNSS 가강수량 시스템 개발)

  • Yoon, Ha Su;Cho, Jung Ho;Park, Han Earl;Yoo, Sung Moon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.471-484
    • /
    • 2017
  • GNSS PWV (Precipitable Water Vapor) is recognized as an important factor for weather forecasts of typhoons and heavy rainfall. Domestic and foreign research have been published that improve weather forecasts using GNSS PWV as initial input data to NWP (Numerical Weather Prediction) model. For rainfall-related weather forecasts, PWV should be provided in real time or NRT (Near-Real Time) and the accuracy and integrity should be maintained. In this paper, the development process of NRT GNSS PWV system using PPP (Precise Point Positioning). To this end, we optimized the variables related to tropospheric delay estimation of PPP. For the analysis of the PPP NRT PWV system, we compared the PWV precision of RP (Relative Positioning) and PPP. As a result, the accuracy of PPP was lower than that of RP, but good results were obtained in the PWV data integrity. Future research is needed to improve the precision of PWV in the PPP method.