• Title/Summary/Keyword: Satellite Navigation System

Search Result 855, Processing Time 0.028 seconds

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

A Study on Automatic Surveillance System using VHF Data Link Protocol (해상이동통신에서 VHF 데이터링크 프로토콜을 이용한 자동감시시스템)

  • 장동원;조평동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1026-1031
    • /
    • 2002
  • In this Paper, We analysed the technical characteristics of a automatic identification system that will introduce in aviation and marine radio stations. IMO's Marine Safety Committee approved revision of chapter V of the Safety of Life at Sea(SOLAS) Convention in 73rd meeting. According to this, AIS will become a mandatory carriage requirement by 01 July 2002. AIS as a surveillance system continuously receives its own position from the GNSS and then repeatedly broadcasts it on a W:.u data link for avoiding traffic conflicts and possible disasters. VHF data link is organized so that a specified number of time slots make up a repeatable frame. Each radio station can autonomously allocate and deallocate slots within the frame using selection algorithm which is called SOTDMA(Self-Organized Time Division Multiple Access). The results can be an aid in the continued of understanding technical characteristics for AIS as a broad surveillance system.

A Study on Automatic Surveillance System using VHF Data Link Protocol (해상이동통신에서 VHF 데이터링크 프로토콜을 이용한 자동감시시스템 연구)

  • 장동원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.187-191
    • /
    • 2002
  • In this paper, We analysed the technical characteristics of a automatic identification system that will introduce in aviation and marine radio stations. IMO's Marine Safety Committee approved revision of chapter V of the Safety of Life at Sea(SOLAS) Convention in 73rd meeting. According to this, AIS will become a mandatory carriage requirement by 01 July 2002. AIS as a surveillance system continuously receives its own position from the GNSS and then repeatedly broadcasts it on a VHF data link for avoiding traffic conflicts and possible disasters. VHF data link is organized so that a specified number of time slots make up a repeatable frame. Each radio station can autonomously allocate and deallocate slots within the frame using selection algorithm which is called SOTDMA(Self-Organized Time Division Multiple Access). The results can be an aid in the continued of understanding technical characteristics for AIS as a broad surveillance system.

  • PDF

A New CBOC Correlation Function for Next Generation GNSS Signal Synchronization (차세대 GNSS 신호 동기화를 위한 새로운 CBOC 상관함수)

  • Lee, Young-Po;Yoon, Tae-Ung;Lee, Myung-Soo;Lee, Young-Yoon;Kim, Sang-Hun;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7C
    • /
    • pp.724-729
    • /
    • 2009
  • Binary offset carrier (BOC) signal synchronization is based on the correlation between the received and locally generated BOC signals. Thus, the multiple side-peaks in BOC autocorrelation are one of the main error sources in synchronizing BOC signals. Recently, new correlation functions with no side-peak were proposed for sine and cosine phased BOC signal synchronization, respectively, by the authors [3]. In this paper, we propose a new correlation function with no side-peak for composite BOC (CBOC) signals by using the similar approach to that in the previous work.

Development of Image-based Assistant Algorithm for Vehicle Positioning by Detecting Road Facilities

  • Jung, Jinwoo;Kwon, Jay Hyoun;Lee, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.339-348
    • /
    • 2017
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from a camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, the mathematical model based on SPR (Single Photo Resection) is derived for image-based assistant algorithm for vehicle positioning. Simulation test is performed to analyze factors affecting SPR. In addition, GNSS/on-board vehicle sensor/image based positioning algorithm is developed by combining image-based positioning algorithm with existing positioning algorithm. The performance of the integrated algorithm is evaluated by the actual driving test and landmark's position data, which is required to perform SPR, based on simulation. The precision of the horizontal position error is 1.79m in the case of the existing positioning algorithm, and that of the integrated positioning algorithm is 0.12m at the points where SPR is performed. In future research, it is necessary to develop an optimized algorithm based on the actual landmark's position data.

The Effect of Altitude Errors in Altitude-aided Global Navigation Satellite System(GNSS) (고도를 고정한 GNSS 위치 결정 기법에서 고도 오차의 영향)

  • Cho, Sung-Lyong;Han, Young-Hoon;Kim, Sang-Sik;Moon, Jei-Hyeong;Lee, Sang-Jeong;Park, Chan-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1483-1488
    • /
    • 2012
  • This paper analyzed the precision and accuracy of the altitude-aided GNSS using the altitude information from digital map. The precision of altitude-aided GNSS is analysed using the theoretically derived DOP. It is confirmed that the precision of altitude-aided GNSS is superior to the general 3D positioning method. It is also shown that the DOP of altitude-aided GNSS is independent of altitude bias error while the accuracy was influenced by the altitude bias error. Furthermore, it is shown that, since the altitude bias error influenced differently to each pseudorange measurement, the effect of the altitude bias error is more serious than clock bias error which does not influence position error at all. The results are evaluated by the simulation using the commercial RF simulator and GPS receiver. It confirmed that altitude-aided GNSS could improve not only precision but also accuracy if the altitude bias error are small. These results are expected to be easily applied for the performance improvement to the land and maritime applications.

A Model-Based Multipath Estimation Technique for GPS Receivers (GPS 수신기를 위한 모델 기반 다중경로 신호 추정 기법)

  • Lim, Deok-Won;Choi, Heon-Ho;Heo, Moon-Beom;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.391-399
    • /
    • 2012
  • Multipath remains a dominant source of ranging errors in GNSS (Global Navigation Satellite System). And it is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function. In this paper, therefore, the model of the distorted shape of the correlation function is formulated and a MBME (Model-Based Multipath Estimation) technique for GPS L1/L5 receivers is proposed in order to estimate the parameters of the indirect signal such as the amplitude and the delay. The MBME technique does not require the any hardware modifications and it can estimate the parameters for both the short and long-delay multipath. Especially, it would be the very effective technique for the short-delay multipath if the L5 signal is available. Finally, the feasibility of the proposed technique has been confirmed by simulation results.

European Union System of Fisheries Management Based on Information and Communication Technology (유럽연합의 ICT기반 수산업 구조개선 현황)

  • Oh, Hyuntaik;Lee, Wonchan;Jung, Raehong;Kim, Hyeonchul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.5
    • /
    • pp.513-519
    • /
    • 2013
  • The fishing industry in Europe has faced environmental, economic, and social challenges. Since the early 2000s, a key tool in addressing these challenges has been information and communication technology (ICT), which has helped to modernize fishery systems in European Union (EU) countries. The ICT used in EU fisheries can be categorized broadly as 1) macro-technologies such as satellite and other remote sensing technologies in combination with geographical information systems, 2) micro-technologies adapted for fishing vessels such as echo sounders, ship navigation devices, and mobile communication devices to connect fishermen and consumers, and 3) onshore micro-technologies related to internet technology and mobile devices. The European Monitoring Center on Change has used ICT to effectively manage fisheries bio-resources. This use of ICT has contributed to the development of sustainable and competent fisheries in the 2000s, even though the knowledge-sharing practices involved are contrary to the long tradition of autonomy within the fishery industry.

Acquisition Performance of Tiered Polyphase Code Based GNSS Signal (계층 다상 부호 기반 위성항법 시스템의 신호획득 성능 연구)

  • Kim, Jeong-Been;Ahn, Jae Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.970-972
    • /
    • 2013
  • Signal acquisition performance is evaluated for the tiered polyphase code (TPC) which is proposed as a ranging signal structure for global navigation satellite systems (GNSSs). Compared to the tiered code (TC) which is adopted in European Union's GALILEO system, the TPC shows robust performance to frequency offset in acquiring signal. Therefore the TPC should have SNR gain in signal acquisition and can reduce computational complexity in the receiver. In this paper, we compare the signal detection probability of the TC and TPC under the same receiver architecture and GALILEO E5a-I signal parameters.

A Combined Pseudo-random Noise Signal Based Advanced Region Correlation Scheme for BOC(pn,n) Modulated GNSS Signals in Repeat-back Jamming Environment (재방송 재밍 환경에서 BOC(pn,n) GNSS 변조된 신호를 위한 CP-ARC 기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.977-983
    • /
    • 2016
  • This paper proposes a novel code-tracking scheme to track the fine code synchronization for BOC (pn,n)-modulated global navigation satellite system signals in a repeat-back jamming environment. The correlation function of BOC (pn,n)-modulated signals has several peaks. The correlation function in the advanced offset region remains almost unchanged due to the repeat-back signals being received later than a line-of-sight signal in the same multipath signal receiving case. Additionally, the combined pseudo-random noise signal can be treated as repeat-back jamming signals, like multipath signals. In this paper, we propose a novel code-tracking scheme utilizing the advantages of using a combined pseudo-random noise signal in the advanced offset region and verify its performance through simulation.