• Title/Summary/Keyword: Satellite Navigation System

Search Result 855, Processing Time 0.025 seconds

Accuracy Comparison of GPT and SBAS Troposphere Models for GNSS Data Processing

  • Park, Kwan-Dong;Lee, Hae-Chang;Kim, Mi-So;Kim, Yeong-Guk;Seo, Seung Woo;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.183-188
    • /
    • 2018
  • The Global Navigation Satellite System (GNSS) signal gets delayed as it goes through the troposphere before reaching the GNSS antenna. Various tropospheric models are being used to correct the tropospheric delay. In this study, we compared effectiveness of two popular troposphere correction models: Global Pressure and Temperature (GPT) and Satellite-Based Augmentation System (SBAS). One-year data from a particular site was chosen as the test case. Tropospheric delays were computed using the GPT and SBAS models and compared with the International GNSS Service tropospheric product. The bias of SBAS model computations was 3.4 cm, which is four times lower than that of the GPT model. The cause of higher biases observed in the GPT model is the fact that one cannot get wet delays from the model. If SBAS-based wet delays are added to the hydrostatic delays computed using the GPT model, then the accuracy is similar to that of the full SBAS model. From this study, one can conclude that it is better to use the SBAS model than to use the GPT model in the standard code-pseudorange data processing.

A Study On Message Scheduling Algorithm for Wide Area Differential GNSS Considering International Standard (국제표준을 고려한 광역보정시스템 메시지 스케쥴링 기법 연구)

  • Han, Deok-Hwa;Yoon, Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.517-522
    • /
    • 2011
  • Global Navagation Satellite System(GNSS) is divided into Local Area Differential GNSS and Wide Area Differential GNSS. Wide Area DGNSS has more complicated structure and massage type. And transfer rate is limited, so efficient message scheduling algorithm is needed to guarantee user's accuracy and integrity. There are about 30 message types in Wide Area DGNSS. Each message type has different update interval. In this paper, the performances of message scheduling algorithm for Wide Area Differential GNSS are investigated. For all message types, results show that max update time interval requirement is satisfied.

Multi-path simulation for satellite-based positioning systems using 3D digital map of urban area

  • Hakamata, Tomohiro;Suh, Yong-Cheol;Konishi, Yusuke;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1015-1017
    • /
    • 2003
  • Recently, DGPS or RTK-GPS techniques enable us to use satellite based positioning systems with high accuracy. But in urban area, navigation systems suffer from problems such as signal blockage by high-rise buildings, multi-path problems, and so on. So we have to know numbers of visible satellites and quality of signals received at the ground level in urban area as accurate as possible. In this paper, we developed a simulation system called LoQAS [Location service Quality Assessment System, 2002, the University of Tokyo] which can simulate numbers of visible satellites and DOP values using accurate satellite orbital data and 3-D digital map. In this time, we evaluated this system and extended it to deal with reflected signals to assess multi-path problems.

  • PDF

Prediction on the Effect of Multi-Constellation SBAS by the Application of SDCM in Korea and Its Performance Evaluation (SDCM의 국내 적용 및 성능 평가를 통한 다중 위성군 SBAS의 효과 예측)

  • Lim, Cheol-soon;Seok, Hyo-jeong;Hwang, Ho-yon;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.417-424
    • /
    • 2016
  • Russia recently began broadcasting the SDCM signal in order to provide SBAS service for the civil aviation in the Russian territory using its own geostationary satellites. The service coverage of the SDCM geostationary satellite, LUCH-5A and LUCH-5B, includes Korea peninsula, where the test signal from the pseudo random number (PRN) 140 is received. This paper shows that the position accuracy at the Chulwon GNSS site is improved to 0.8749 m (horizontal) and 0.9589 mm (vertical) by applying the received SDCM message to the RINEX data. Considering that the SDCM augments both GPS and GLONASS, the performance of multi-constellation SBAS was compared to that of GPS-only SBAS, and APV-I availability was improved by decreasing the protection level about 30 %. From the results, we can expect that the mult-constellation SBAS can contribute to the performance enhancement of the future KASS.

An Analysis of Reference Station Distribution Impact on KASS UDRE Performance (기준국 배치에 따른 한국 위성기반 보강 시스템 UDRE 성능 영향 분석)

  • Yun, Youngsun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.207-216
    • /
    • 2015
  • Since the distribution of SBAS reference stations is one of the most important factors that affect the system performance, the effects of the distribution should be analyzed carefully from the beginning of the program to develop the system conforming to given performance requirements. The reference stations of KASS, the Korean SBAS, are planned to be installed only inside South Korea, which limits the number and area of those. It differentiates KASS from others that have much larger sites. In this paper, the author analyzes the performance impact on UDRE and ${\delta}UDRE$ for GPS and GEO due to the limitations by a series of simulations, which showed that the UDRE performance depends on the diversity of the reference station distribution and the impact on the GEO UDRE is significant. The paper concludes by providing KASS design and development considerations to minimize the possible performance risks due to the limitations of KASS reference station distribution.

Real-Time Detection of Seismic Ionospheric Disturbance Using Global Navigation Satellite System Signal (위성항법 신호를 이용한 지진에 의한 전리층 교란 실시간 검출 기법 연구)

  • Song, Junesol;Kang, Seon-Ho;Han, Deok-Hwa;Kim, Bu-Gyeom;Kee, Changdon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.549-557
    • /
    • 2019
  • In this paper, we focus on the real-time detection method of a seismic ionospheric disturbance using Global Navigation Satellite System (GNSS) signal. First, the monitor for the detection of the seismic ionospheric disturbance is studied based on the estimated ionospheric delay using the GNSS signals. And then, the threshold for the automatic detection is computed. Moreover, to discriminate the seismic ionospheric disturbance against the other ionospheric anomalies due to other error sources such as cycle slips, the signatures of the ionospheric perturbation caused by the seismic wave is investigated. Based on the observation, the detection strategy is proposed. Using GPS observations collected from the 47 permanent stations in South Korea and Japan, the proposed real-time detection method is evaluated.

Estimation of GNSS Zenith Tropospheric Wet Delay Using Deep Learning (딥러닝 기반 GNSS 천정방향 대류권 습윤지연 추정 연구)

  • Lim, Soo-Hyeon;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • Data analysis research using deep learning has recently been studied in various field. In this paper, we conduct a GNSS (Global Navigation Satellite System)-based meteorological study applying deep learning by estimating the ZWD (Zenith tropospheric Wet Delay) through MLP (Multi-Layer Perceptron) and LSTM (Long Short-Term Memory) models. Deep learning models were trained with meteorological data and ZWD which is estimated using zenith tropospheric total delay and dry delay. We apply meteorological data not used for learning to the learned model to estimate ZWD with centimeter-level RMSE (Root Mean Square Error) in both models. It is necessary to analyze the GNSS data from coastal areas together and increase time resolution in order to estimate ZWD in various situations.

eLoran Signal Standard Inspection Process Development

  • Son, Pyo-Woong;Seo, Kiyeol;Fang, Tae Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.153-158
    • /
    • 2021
  • In order to mitigate the vulnerability of the satellite navigation system against radio frequency interference, South Korea has been developing advanced terrestrial navigation system (eLoran) technology since 2016. The eLoran system synchronizes the transmission time of the pulse used in the existing Loran-C system with UTC and transmits correction information that can improve the position error. The eLoran system is known to reduce the position error of about 460 m of the existing Loran-C system to 20 m, and for this, the transmitter must be able to transmit eLoran signals according to more stringent standards. For this reason, an international standard that further developed the Loran-C signal standard established by US Coast Guard was established by Society of Automotive Engineers (SAE) International. In this paper, based on the analysis of the SAE9990 document, the international standard for eLoran transmission signals, a standard inspection process was produced to check whether the eLoran transmitter is transmitting signals in accordance with the standard.

A Basic Study on the Jamming Mechanisms and Characteristics against GPS/GNSS Based on Navigation Warfare

  • Ko, Kwang-Soob
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • It has been recognized that the risk from the vulnerability of GPS can lead to the extreme damage in the infrastructure of the civil and military in recent years. As an example, the intentional interference to GPS signal, named GPS jamming, was really performed to misguide GPS guided weapons during Iraq war in 2003, and the fact has also followed by the serious issues on GPS in civilian community. In the modernized military society, the navigation warfare(NAVWAR) based on the GPS jamming has been emerged and introduced as a military operation. The intentional interference to the future global navigation satellite system(GNSS) involving GPS must be also an important issue to civilian users in near future. This study is focused on the fundamental research prior to the research on "Potential principle of NAVWAR" under NAVWAR of the future warfare. In this paper, we would study on the investigation of NAVWAR based on electronic warfare(EW) and analyze characteristics of the jamming against GNSS's receivers. Then the general mechanism on GNSS jamming is proposed.