• Title/Summary/Keyword: Satellite Mission

Search Result 659, Processing Time 0.023 seconds

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

THE INTERFACE CONFIGURATION OF OVERSEA STATIONS AND OPERATION PLAN FOR KOMPSAT-2 LEOP

  • Baek Hyun-Chul;Kim Hae-Dong;Ahn Sang-Il;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.557-560
    • /
    • 2005
  • The Korea Multi-Purpose SATellite-2 (KOMPSAT -2) will be launched into a circular sun synchronous orbit in Dec. 2005. For the mission operation of the KOMPSAT-2 satellite, KARl Ground Station (KGS) consists of the Mission Control Elements (MCE), Image Reception & Processing Elements (IRPE) and the overseas stations. For the oversea stations, the Kongsberg Satellite Services (KSAT) is the prime supplier of support service. KSAT has the capability to provide Tracking Telemetry and Commanding (TT&C) nominal, contingency and anomaly support for every single orbit for most polar orbiting satellites. Also KSAT provides nodal service through the network management functionality for all oversea ground stations. This paper describes the oversea stations and the support for Launch and nominal TT&C services for KOMPSAT-2 and the operation plan for KOMPSAT-2.

  • PDF

Quality Cost Mitigation Strategy through Satellite's Mission Assurance (임무보증활동을 통한 인공위성 품질비용 저감방안)

  • Kim, You-gwang;Lee, Woo-jun;Baek, Myung-jin;Chun, Young-Sik;Lee, Nak-young
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.41-46
    • /
    • 2015
  • The various risk factors that affected schedule, costs and mission success, etc. in development of the satellite. This paper derives the considerable "Cost of Quality" factors in the satellite development phase through the survey of practical techniques in respect of measurement of quality cost in the commercial products manufacturing, and proposes mitigation strategy of quality cost using the approach that can be minimized it.

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Park, Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.46-46
    • /
    • 2003
  • Since its launching on 21 December 1999, the KOrea Multi-Purpose SATellite-Ⅰ (KOMPSAT-Ⅰ) has been successfully operated by the Mission Control Element (MCE), which was developed by the Electronics and Telecommunications Research Institute (ETRI). Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. The Mission Analysis and Planning Subsystem (MAPS), which is one of the four subsystems in the MCE, played a key role in the Launch and Early Orbit Phase (LEOP) operations as well as the on-orbit mission operations. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft from injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations. We also present the orbital evolutions during the three years of the mission life of the KOMPSAT-Ⅰ.

  • PDF

Efficient Satellite Mission Scheduling Problem Using Particle Swarm Optimization (입자 군집 최적화 방법론을 이용한 효율적 위성임무 일정 수립에 관한 연구)

  • Lee, Youngin;Lee, Kangwhan;Seo, Inwoo;Ko, Sung-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • We consider a satellite mission scheduling problem, which is a promising problem in recent satellite industry. This problem has various considerations such as customer importance, due date, limited capacity of energy and memory, distance of the location of each mission, etc. Also we consider the objective of each satellite such as general purpose satellite, strategic mission and commercial satellite. And this problem can be modelled as a general knapsack problem, which is famous NP-hard problem, if the objective is defined as to maximize the total mission score performed. To solve this kind of problem, heuristic algorithm such as taboo and genetic algorithm are applied and their performance are acceptable in some extent. To propose more efficient algorithm than previous research, we applied a particle swarm optimization algorithm, which is the most promising method in optimization problem recently in this research. Owing to limitation of current study in obtaining real information and several assumptions, we generated 200 satellite missions with required information for each mission. Based on generated information, we compared the results by our approach algorithm with those of CPLEX. This comparison shows that our proposed approach give us almost accurate results as just less than 3% error rate, and computation time is just a little to be applied to real problem. Also this algorithm has enough scalability by innate characteristic of PSO. We also applied it to mission scheduling problem of various class of satellite. The results are quite reasonable enough to conclude that our proposed algorithm may work in satellite mission scheduling problem.

LRIT DESIGN OF COMS

  • KOO In-Hoi;PARK Durk-Jong;SEO Seok-Bae;AHN Sang-Il;KIM Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.305-308
    • /
    • 2005
  • The COMS, Korea's first geostationary multipurpose satellite program will accommodate 3 kind of payloads; Ka-Band communication transponder, GOCI (Geostationary Ocean Color Imager), and MI (Meteorological Imager). MI raw data will be transferred to ground station via L-band link. The ground station will perform image data processing for raw data, generate them into the LRIT/HRIT format, the user dissemination data recommended by the CGMS. The LRIT/HRIT are disseminated via satellite to user stations. This paper shows the COMS LRIT data generation procedure based on COMS LRIT specification and its verification results using the LRIT user station.

  • PDF

Development of Electrical Power Subsystem of Cube Satellite STEP Cube Lab for Verification of Space-Relevant Technologies

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.31-37
    • /
    • 2016
  • STEP Cube Lab (Cube Laboratory for Space Technology Experimental Project) is a 1U standardized pico-class satellite. Its main mission objective is an on-orbit verification of five fundamental core space technologies. For assuring a successful missions of the STEP Cube Lab with five payloads, electrical power subsystem (EPS) shall sufficiently provide an electrical power to payloads and bus systems of the satellite during an entire mission life. In this study, a design process of EPS system was introduced including power budget analysis considering a mission orbit and various mission modes of the satellite. In conclusion, adequate EPS hardware in compliance with design requirements were selected. The effectiveness and mission capability of EPS architecture design were confirmed through an energy balance analysis (EBA).

GOES-9 Raw Data Acquisition & Image Extraction

  • Kang C. H.;Park D. J.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.582-585
    • /
    • 2005
  • The Geostationary Operational Environmental Satellite (GOES) 9, which is currently located at 155°E geostationary orbits, has transmitted earth observation data acquired by imager to CDA at NOAA. After the acquisition on ground, observation data are corrected on ground and re-transmitted to GOES-9 for the dissemination to users. In this paper, the procedure and result from raw data acquisition and pre-processing for earth observation imagery retrieval from GOES-9 Raw data acquired in Korea at May 2005 are introduced.

  • PDF

THE RELATION BETWEEN HPA AND COMS MULTI-CARRIER

  • Park Durk-Jong;Yang Hyung-Mo;Hyun Dae-Wan;Ahn Sang-Il;Kim Eun-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.564-566
    • /
    • 2005
  • The relation between HPA (High Power Amplifier) and COMS (Communication Ocean Meteorological Satellite) multi-carrier is analyzed in this paper. MODAC (Meteorological and Ocean Data Application Center) has a primary mission to transmit processed data, HRIT (High Rate Information Transmission) and LRIT (Low Rate Information Transmission), which is normalized and calibrated by pre-processing. It is also replaced with the SOC (Satellite Operation Center) in emergency case and can transmit the command and ranging tones for operation of COMS. From the result of simulation with modelled HPA, it is found that the multi-carrier in one HPA can give rise to an inter-modulation which makes harmonic and spurious elements increase in-band. Under the environment of these increased parasitic elements, the degradation of multi-carrier's quality is estimated from the ratio of the amount of noise to total output power of HPA.

  • PDF

DEVELOPMENT OF THE KOMPSAT-2 SATELLITE MISSION CONTROL SYSTEM

  • Lee Byoung-Sun;Lee Sanguk;Mo Hee-Sook;Cho Sungki;Jung Won Chan;Kim Myungja;Kim In-Jun;Kim Tae-Hee;Joo Inone;Hwang Yoola;Kim Jaehoon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.300-303
    • /
    • 2004
  • KOMPSAT-2 satellite mission operations and control system has been developed by ETRI. The system functional architecture, analysis and design, implementation, and tests are presented in this paper.

  • PDF