• Title/Summary/Keyword: Satellite Communication Transponder

Search Result 70, Processing Time 0.02 seconds

Radiation Analysis of Communications and Broadcasting Satellite

  • Park, Jae-Woo;Chung, Tae-Jin;Lee, Seong-Pal;Seon, Jong-Ho;Jeong, Yun-Whang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 2002
  • A radiation analysis is performed for the Ka and Ku-band transponder of the Communications and Broadcasting Satellite (CBS) that is planned for launch into the geo-synchronous orbit. A particular attention is given to calculation of Total Ionizing Dose (TID) for the mission life time of 15 + 3 years. A numerical modeling of the charged particles at the geo-synchronous orbit is undertaken. The charged particles from the modeling are then transported through the mechanical structure and component housings of the transponder. A set of locations are selected for the detailed calculation of TID. The results from the present calculation show that three-dimensional modeling of the component housings as well as the mechanical structure of the spacecraft is requisite in order to acquire a reliable calculation of TID.

Transponder Monitoring and Control System for COMS Ka-band Communication Payload (천리안위성 Ka대역 통신탑재체 제어관리시스템(TMC))

  • You, Moon-Hee;Chan, Jung-Won;Lee, Seong-Pal;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.48-53
    • /
    • 2010
  • COMS (Communication, Ocean and Meteorological Satellite), which will be launched in June 23rd, 2010 and located on geostationary orbit at the latitude of $128.2^{\circ}E$, is a multi-function satellite for communications, ocean observation, and meteorology. In order to operate Ka-band communication payload effectively, which is one of the three payloads for COMS, the Transponder Monitoring and Control (TMC) system are necessary in ground systems. In this paper, the concepts and design of the TMC system for COMS Ka-band payload are described.

A Gigabit Serial Transceiver Design Using FPGA for Satellite Communication Transponder (위성통신 중계기에서의 FPGA를 이용한 Gigabit 시리얼 송수신기 설계)

  • Hong, Keun-Pyo;Lee, Jung-Sub;Jin, Byoung-Il;Ko, Hyun-Suk;Seo, Hak-Geum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.481-487
    • /
    • 2014
  • In this paper, we have proposed gigabit serial transceiver based on backplane architecture at the satellite communication digital transponder. The transponder supports the full combinational switching function with broadband multi-channel using programmable device - Xilinx space-grade Virtex-5 FPGA. In order to implement the switching function, GTX transceiver solution inside Virtex-5 FPGA is used. Also hardware implementation is simple because of no additional component. In order to use a GTX transceiver, signal integrity(SI) simulation of PCB design is essential. We investigate the characteristics of the S-parameter, eye diagram, channel jitter of GTX transmission line and conform that GTX Transceiver operates without error. Finally the proposed PCB design will be utilized at satellite communication digital transponder EQM-2(Engineering Qualification Model-2).

Network Configurations and Characteristics of the KOREASAT Satellites' Services (무궁화위성 서비스망의 구성과 특성)

  • Chung, Sang-Wook;Yang, Sang-Jin
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.22-33
    • /
    • 1996
  • The KOREASAT satellite, the first Korean commercial communication and broadcasting satellite, has been launched in August 1995, and has started to provide the communication and preliminary broadcasting services, respectively, in March and July 1996. In this paper the network configurations and characteristics of the services which the KOREASAT satellite provides are described. The services, which are provided by the KOREASAT satellite with its twelve communication and four broadcasting transponders, are the direct broadcasting service, the video relay service including the TVRO, SNG and TV/CATV program distribution, the company-wide communication service including VSAT and TSAT, and the other services with the digital line, trunk relay, telephone line, mobile data, music broadcasting services, etc. A communication transponder has the 36MHz bandwidth and 14W output power, and a broadcasting transponder has the 27MHz bandwidth and 12OW output power.

  • PDF

Performances Evaluation of Ka Band Communications Transponder for COMS (통신해양기상위성 Ka 대역 통신탑재체 성능검증)

  • Lee, Yong-Min;Lee, Seong-Pal
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • COMS is the one of Korean hybrid geostationary satellite and is scheduled to be launched in 2009 by Arian V into $128^{\circ}$ E longitude. COMS is designed and manufactured for three main objectives which are Communications, Oceanographic, and Meteorological missions. It provides the weather monitoring, ocean monitoring, and Ka band satellite communication services by means of three different payloads. The Ka band communications payload was developed by Electronics and Telecommunications Research Institute (ETRI), and provides not only the digital transmission for the communication services against natural disaster but also digital transmission for the high speed multimedia services. This paper describes the overview of the electrical and mechanical design and measured performances of the Ka band communications transponder flight model (FM) for COMS.

  • PDF

A Study of Mid-sized Communication Satellite in Korea (국내 중형 통신위성의 발전 방안)

  • Woo, Hyung Je;Lee, Daeil;Han, Sang Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.104-109
    • /
    • 2016
  • A technology of GEO satellite communications starts from Koreasat program in Korea. Payload equipment of EQM Ku and Ka band transponders had been developed and space-qualified Ka band payload in COMS was successfully launched in June, 2010. For the purpose of military communications, Dehop-Rehop transponder was developed in Koreasat5 as ANASIS system and DAT(Digital Active Transponder) and DCAMP(Digital Channel AMPlifier) transponders are now under development. In this paper, from the study of military satellite communications trend, a direction of military communication satellite is suggested based on the current GEO SATCOM technologies in Korea. Considering the limit of frequency resources, a technology of battlefield adaptive transponder with medium capacity against high moveable jamming tactics would be efficient for the future military SATCOM system. Mid-sized military satellites with frequency hopping and mid-capacity transponders can be a solution of vitalizing the GEO satellite programs.

Ka band Communication Payload System Technology of COMS (천리안 위성 Ka 대역 통신탑재체시스템 기술)

  • Lee, Seong-Pal;Jo, Jin-Ho;You, Moon-Hee;Choi, Jang-Sup;Ahn, Ki-Burm
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.75-81
    • /
    • 2010
  • COMS (Communication, Ocean and Meteorological Satellite) is the multi-purposed Korean geostationary satellite funded by four Korean government ministries, and is to supply communication services, ocean and weather observation for 7 years. As part of COMS, development of Ka band communication payload composed of microwave switching transponder and multi-horn antenna is sponsored by KCC (Korea Communications Commission) and developed by ETRI (Electronics and Telecommunications Research Institute). The purpose of Ka Payload development is to acquire space proven technology of Ka payload and to exploit advanced multimedia communication services. This paper aims to study development technology of Ka payload system through whole process of ETRI project. Also application of Ka payload will be dealt in this paper.

Environmental test of wideband waveguide input filter in ku-band satellite transponder (Ku-band 위성중계기내 광대약 도파관형 입력여파기에 대한 환경시험 수행에 관한연구)

  • 유경완;박광량
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.84-91
    • /
    • 1996
  • Input filter for satellite communication transponder is the interface between the antenna and the receiver. It is used to provide the selection of the uplink signals with minimum insertion loss and to prevent downlink signals form reaching the LNA. This paper is intended to provide a description of the input filter for KOREASAT communication transponder. Included are description for the electrical and mechanical design and the requirments of environmental test. In expecting the electrical performine the optimum electrical configuration ot meet all requirements are performed. Mechanical requirements are charactersed by several constraints for weight, size of the filter and its type of input output interface. The standardized environmental tests are performed to confirm satisfactory performance of the filter with respect to the requirements of vibration and thermal vacuum shocks.

  • PDF