• 제목/요약/키워드: Satellite Camera

검색결과 314건 처리시간 0.05초

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • Korean Journal of Remote Sensing
    • /
    • 제18권1호
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF

The Design of MSC(Multi-Spectral Camera) System Operation

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Paik, Hong-Yul;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.825-827
    • /
    • 2003
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/ offset and on-board image data compression/storage. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the architecture and function of MSC hardware including electrical interface and the operation concept which have been established based on the mission requirements are described. And the design and the preparation of MSC system operation are analyzed and discussed.

  • PDF

Interface Design of Camera Electronic Module for a Satellite Eletro-Optic System (위성용 전자광학시스템 카메라전자부의 인터페이스 설계)

  • Kong, Jong-Pil;Kim, Bo-Gwan
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.1157-1158
    • /
    • 2008
  • This paper describes the interface designs of Optical-Camera Electronic unit with a DFPA(Detector Focal Plane Assembly) and IDHU(Image Data Handling Unit) which meet the top-level requirement of a satellite system. Especially, the designs on the image format and timing of the Header information for the correct reconstruction of the image in the Groundstation are explained in detail.

  • PDF

Mission Control System for KOMPSAT-2 Operations (다목적 실용위성2호 관제시스템 운용)

  • Jeong, Won-Chan;Lee, Byeong-Seon;Lee, Sang-Uk;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • 제1권2호
    • /
    • pp.76-82
    • /
    • 2006
  • The Mission Control System for KOMPSAT-2 was developed by ETRI and is being operated at Satellite Control Center at KARI to monitor and control KOMPSAT-2 (KOrea Multi-Purpose Satellite) which was launched in July 28th, 2006. MCE provides the functions such as telemetry reception and processing, telecommand generation and transmission, satellite tracking and ranging, orbit prediction and determination, attitude maneuver planning, satellite simulation, etc. KOMPSAT-2 is the successor of KOMPSAT-1 which is an earth-observation satellite. KOMPSAT-2 has higher resolution image taking ability due to MSC (Multi Spectral Camera) payload in the satellite and precise orbit and attitude determination by Mission Control System. It can produce one meter resolution image compared to six meter resolution image by KOMPSAT-1.

  • PDF

Structural Safety Evaluation of Electro-Optical Camera Controller Box of CAS500 Satellite under Launch Environments (발사환경에 대한 차세대 중형위성 전자광학 카메라 제어용 전장품의 구조건전성 평가)

  • Lee, Myeong-Jae;Kim, Hyun-Soo;Lee, Duk-Kyu;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • 제12권4호
    • /
    • pp.98-105
    • /
    • 2018
  • The satellite is exposed to various launch environments such as random vibrations and shock. Accordingly, structural design of electronic equipment mounted on satellite must meet reliability requirements at the box level. In addition, it is essential to secure the reliability of the solder joint applied to electronic equipment. In this paper, we performed a modal and quasi-static analysis for the purpose of satisfaction of the design requirements of the CCB (Camera Controller Box) present on the 500 kg-class compact advanced satellite (CAS500). In addition, structural safety of electronic components was verified by the Steinberg's method and random equivalent static analysis.

Optical Design for Satellite Camera with Online Optical Compensation Movements (온라인 광학보정장치를 적용한 위성카메라의 광학설계)

  • Jo, Jeong-Bin;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제43권3호
    • /
    • pp.265-271
    • /
    • 2015
  • In this study, optical design for small satellite camera equipped with online optical compensation movements has been conducted. Satellite camera equipped with compensation movements at M2 mirror and focal plane can guarantee the MTF performance through the focal plane image stabilization and the on-orbit optical alignment. The designed optical system is schmidt-cassegrain type that has M1 mirror of a diameter 200mm, GSD 3.8m at an altitude of 700km, and 50 % MTF performance. The performance of the designed optical system has been analyzed through the method of ray aberration curve, spot diagram, and MTF. It has been found by the optical performance analysis that the designed optical system satisfies the optical requirements of satellite camera equipped with online optical compensation movements.

Exterior Orientation Parameters Determination from Satellite Imagery RPC Camera Model (위성영상 RPC 카메라 모델로부터 외부표정요소 결정)

  • Lee Hyo Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제23권1호
    • /
    • pp.59-67
    • /
    • 2005
  • This paper proposes method for determining exterior orientation parameters (EOPs) from the RPC mathematical camera model of the satellite image. SPOT satellite stereo pair is pre-tested using the proposed method. As results that, geopositioning errors are similar with those of the original EOPs. Differences between EOPs determined from the RPC and original EOPs were small. IKONOS Geo-level stereo pair is tested by the proposed method. Results of this method are compared with those of the RPC block adjustment method which have been verified in reported studies. Consequently, the proposed method showed accuracy similar to the RPC block adjustment method. The digital elevation models (DEMs) of sample area acquired by the two method almost did not have a difference.

Analysis on the Measurement Results of the Focus Motor Position in MSC (Multi-Spectral Camera) on KOMPSAT - II

  • Heo, H.P.;Kong, J.P.;Kim, Y.S.;Park, J.E.;Chang, Y.J.;Lee, S.H.
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.372-375
    • /
    • 2006
  • The MSC is a high resolution multi-spectral camera system which is mounted on the KOMPSAT-II satellite. The electro-optic camera system has a refocusing mechanism which can be used in-orbit by ground commands. By adjusting locations of some elements in optics, the system can be focused precisely. The focus mechanism in MSC is implemented with stepper motor and potentiometer. By reading the value of the potentiometer, rough position of the motor can be understood. The exact location of the motor can not be acquired because the information from the potentiometer can not be so accurate. However, before and after certain events of the satellite, like a satellite launch, the direction of the movement or order of the magnitude of the movement can be understood. In this paper, the trend analysis of the focus motor position during the ground test phase is introduced. This result can be used as basic information for the focus calibration after launch. By studying the long term trend, deviation from the best focal point can be understood. The positions of the focus motors after launch are also compared.

  • PDF

Control of Focal Plane Compensation Device for Image Stabilization of Small Satellite Camera (소형 위성 카메라의 영상안정화를 위한 초점면부 보정장치의 제어)

  • Kang, Myoungsoo;Hwang, Jaihyuk;Bae, Jaesung
    • Journal of Aerospace System Engineering
    • /
    • 제10권1호
    • /
    • pp.86-94
    • /
    • 2016
  • In this paper, position control of focal plane compensation device using piezoelectric actuator is conducted. The forcal plane compensation device installed on earth observation satellite camera compensates micro-vibration from reaction wheels. In this study, four experimental models of the open-loop compensation device are derived using MATLAB system identification toolbox in the input range of 0~50Hz. Subsequently, the PID controller for each model is designed and the performance test of each controller is conducted through MATLAB/Simulink. According to frequency response analysis of the closed-loop compensation device system, the PID controller designed for 38~50Hz input range has enough tracking performance for the whole 0~50Hz input range. The maximum output error is about $1{\mu}m$ for the input range. The simulation results has been verified by the experimental method.