• Title/Summary/Keyword: Satellite Actuator

Search Result 44, Processing Time 0.023 seconds

Shape Memory Alloy Actuator and Spiral Spring Based Separation Actuator for Small Satellite (형상기억합금구동기와 태엽스프링을 이용한 소형위성용 분리장치)

  • Lee, Min-Hyoung;Son, Jae-Hwang;Kim, Young-Woong;Kim, Byung-Kyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.10-15
    • /
    • 2011
  • The separation actuator for the small satellite should fix satellite appendages with high clamping force. After operation, it has to be separated from the satellite body without any damage on satellite system and release the appendages such as a solar panel and an antenna successfully. Therefore, we invent a non-explosive separation actuator for the small satellite which generates low shock and is resettable. In order to confirm performance of the proposed separation actuator, we carried out experiments for separation time, maximum preload for activation, and shock level.

Satellite Attitude Control with a Modified Iterative Learning Law for the Decrease in the Effectiveness of the Actuator

  • Lee, Ho-Jin;Kim, You-Dan;Kim, Hee-Seob
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.87-97
    • /
    • 2010
  • A fault tolerant satellite attitude control scheme with a modified iterative learning law is proposed for dealing with actuator faults. The actuator fault is modeled to reflect the degradation of actuation effectiveness, and the solar array-induced disturbance is considered as an external disturbance. To estimate the magnitudes of the actuator fault and the external disturbance, a modified iterative learning law using only the information associated with the state error is applied. Stability analysis is performed to obtain the gain matrices of the modified iterative learning law using the Lyapunov theorem. The proposed fault tolerant control scheme is applied to the rest-to-rest maneuver of a large satellite system, and numerical simulations are performed to verify the performance of the proposed scheme.

Development and Performance Test of a Spherical Reaction Wheel Actuator with Magnetic Levitation (자기부상을 적용한 구체 반작용휠 구동기 개발 및 성능 시험)

  • Kim, Dae-Kwan;Yoon, Hyung-Joo;Kim, Yong-Bok;Kang, Woo-Yong;Choi, Hong-Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.731-737
    • /
    • 2012
  • In the present study, a feasibility study on an innovative satellite attitude control actuator is performed. The actuator is specially designed to generate the reaction torque in an arbitrary axis, so that a satellite attitude can be controlled by using itself. It consists of a spherical flywheel and electromagnets for levitation and rotation control of the ball. As the earlier study, a rotating performance test on the spherical actuator is conducted in a single rotating axis and vertical levitation condition. From the test results, it can be confirmed that the maximum speed and torque of the innovative device are 7,200rpm and 0.7Nm, respectively. Using a velocity-voltage characteristic curve of the spherical motor, an open-loop control (V/f constant control) is performed, and the test results show excellent control performance in acceleration and deceleration phases.

SMA(SHAPE MEMORY ALLOY) ACTUATOR USING FORCED CONVECTION (강제 대류를 이용한 형상기억합금 작동기)

  • Jun Hyoung Yoll;Kim Jung-Hoon;Park Eung Sik
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.48-53
    • /
    • 2005
  • This work discusses the numerical analysis, the design and experimental test of the SMA actuator along with its capabilities and limitations. Convective heating and cooling using water actuate the SMA(Shape memory alloy) element of the actuator. The fuel such as propane, having a high energy density, is used as the energy source for the SMA actuator in order to increase power and energy density of the system, and thus in order to obviate the need for electrical power supplies such as batteries. The system is composed of a pump, valves, bellows, a heater(burner), control unit and a displacement amplification device. The experimental test of the SMA actuator system results in 150 MPa stress(force : 1560 N) with $3\%$ strain and 0.5 Hz. actuation frequency. The actuation frequency is compared with the prediction obtained from numerical analysis. For the designed SMA actuator system, the results of numerical analysis were utilized in determining design parameters and operating conditions.

Performance Test and Characteristics Analysis of a Spherical Reaction Wheel (구체 반작용휠 구동기의 성능 시험 및 특성 분석)

  • Kim, Dae-Kwan;Yoon, Hyung-Joo;Kim, Yong-Bok;Kang, Woo-Yong;Choi, Hong-Taek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.183-187
    • /
    • 2012
  • In the present study, a feasibility study on an innovative satellite attitude control actuator is performed. The actuator is specially designed to generate the reaction torque in an arbitrary axis, so that a satellite attitude can be controlled by using itself. It consists of a spherical flywheel and electromagnets for levitation and rotation control of the ball. As the earlier study, a rotating performance test on the spherical actuator is conducted in a single rotating axis and vertical levitation condition. From the test results, it can be confirmed that the maximum speed and torque of the innovative device are 7,200rpm and 0.7Nm, respectively. Using torque-voltage characteristics of the spherical motor, an open-loop control (V/f constant control) is performed, and the test results show excellent control performance in acceleration and deceleration phases.

  • PDF

Sliding Mode Control of Spacecraft with Actuator Dynamics

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.169-175
    • /
    • 2002
  • A sliding mode control of spacecraft attitude tracking with actuator, especially reaction wheel, is presented. The sliding mode controller is derived based on quaternion parameterization for the kinematic equations of motion. The reaction wheel dynamic equations represented by wheel input voltage are presented. The input voltage to wheel is calculated from the sliding mode controller and reaction wheel dynamics. The global asymptotic stability is shown using a Lyapunov analysis. In addition the robustness analysis is performed for nonlinear system with parameter variations and disturbances. It is shown that the controller ensures control objectives for the spacecraft with reaction wheels.

Non-explosive Low-shock Separation Device for small satellite (소형 위성용 비폭발식 저충격 분리장치)

  • Park, Hyun-Jun;Tak, Won-Jun;Han, Bum-Ku;Kwag, Dong-Gi;Hwang, Jai-Hyuk;Kim, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.457-463
    • /
    • 2009
  • This paper describes the development of non-explosive separation(NES) device which can be equipped on a small satellite. It comprises mechanism itself and spring-type shape memory alloy(SMA) actuator. In order to design SMA actuator properly, the necessary actuation force is measured. Based on that result, SMA actuator is designed and fabricated. Finally, SMA actuator and the proposed mechanism are integrated. In order to evaluate performance of the developed NES, we carried out a response time test, preload test and shock level test. In near future, we expect to replace the imported NES device with the developed device.

Highly Agile Actuator Development Status of an 800 mNm Control Moment Gyro (CMG)

  • Goo-Hwan Shin;Hyosang Yoon;Hyeongcheol Kim;Dong-Soo Choi;Jae-Suk Lee;Young-Ho Shin;Eunji Lee
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.322-332
    • /
    • 2023
  • Satellite attitude-control actuators are equipped with a reaction wheel for three-axis attitude control. The reaction wheel rotates a motor inside the actuator to generate torque in the vector direction. When using the reaction wheel, there are restrictions on the torque values generated as the motor rotates. The torque value of the reaction wheels mounted on small satellites is approximately 10 mNm, and high values are not used. Therefore, three-axis attitude control of a small satellite is possible using a reaction wheel, but this method is not suitable for missions that require rapid attitude control at a specific time. As a technology to overcome the small torque value of the reaction wheel, the control moment gyro (CMG) is currently in wide use as a rapid attitude-control actuator in space satellites. The CMG has an internal gimbal mounted at a right angle to the rotation motor and generates a large torque value. In general, when the gimbal operates, a torque value approximately 100 times greater is generated, making it suitable for rapid posture maneuvering. Currently, we are developing a technology for mounting a controlled moment gyro on a small satellite, and here we share the development status of an 800 mNm CMG.

Neural Network based Three Axis Satellite Attitude Control using only Magnetic Torquers

  • Sivaprakash, N.;Shanmugam, J.;Natarajan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1641-1644
    • /
    • 2005
  • Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. This actuation principle has been a topic of research since earliest satellites were launched. Earlier magnetic control has been applied for nutation damping for gravity gradient stabilized satellites, and for velocity decrease for satellites without appendages. The three axes of a micro-satellite can be stabilized by using an electromagnetic actuator which is rigidly mounted on the structure of the satellite. The actuator consists of three mutually-orthogonal air-cored coils on the skin of the satellite. The coils are excited so that the orbital frame magnetic field and body frame magnetic field coincides i.e. to make the Euler angles to zero. This can be done using a Neural Network controller trained by PD controller data and driven by the difference between the orbital and body frame magnetic fields.

  • PDF

Dynamic Characteristics of a Piezoelectric Driven Stick-Slip Actuator for Focal Plane Image Stabilization (초점면부 영상안정화를 위한 압전형 마찰구동기의 동특성 연구)

  • Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.399-405
    • /
    • 2009
  • The focal plane image stabilization for a satellite camera is one of the an effective method which can increase the satellite camera's image quality by removing the motion disturbance of a focal plane. The objectives of this article are to introduce the concept of the focal plane image stabilization and determine the best driving conditions of the actuator for the response and thrust. Under various driving condition the experiments have been performed to investigate the response and thrust characteristics of the piezoelectric driven stick-slip actuator of the focal plane image stabilizing device. From experiments, the best driving frequency and duty ratio for the magnesium slider are 70 kHz and 27%, respectively.