• Title/Summary/Keyword: Sarsa(0)

Search Result 2, Processing Time 0.016 seconds

A Dynamic Channel Assignment Method in Cellular Networks Using Reinforcement learning Method that Combines Supervised Knowledge (감독 지식을 융합하는 강화 학습 기법을 사용하는 셀룰러 네트워크에서 동적 채널 할당 기법)

  • Kim, Sung-Wan;Chang, Hyeong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.502-506
    • /
    • 2008
  • The recently proposed "Potential-based" reinforcement learning (RL) method made it possible to combine multiple learnings and expert advices as supervised knowledge within an RL framework. The effectiveness of the approach has been established by a theoretical convergence guarantee to an optimal policy. In this paper, the potential-based RL method is applied to a dynamic channel assignment (DCA) problem in a cellular networks. It is empirically shown that the potential-based RL assigns channels more efficiently than fixed channel assignment, Maxavail, and Q-learning-based DCA, and it converges to an optimal policy more rapidly than other RL algorithms, SARSA(0) and PRQ-learning.

Potential-based Reinforcement Learning Combined with Case-based Decision Theory (사례 기반 결정 이론을 융합한 포텐셜 기반 강화 학습)

  • Kim, Eun-Sun;Chang, Hyeong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.978-982
    • /
    • 2009
  • This paper proposes a potential-based reinforcement learning, called "RLs-CBDT", which combines multiple RL agents and case-base decision theory designed for decision making in uncertain environment as an expert knowledge in RL. We empirically show that RLs-CBDT converges to an optimal policy faster than pre-existing RL algorithms through a Tetris experiment.