• Title/Summary/Keyword: Sap

Search Result 807, Processing Time 0.03 seconds

Rebound Pulmonary Hypertension After Nitric Oxide Withdrawal (산화질수(Nitric Oxide) 중단 후의 반동성폐고혈압)

  • 이현우;이재웅;현성열;박철현;박국양;이경천
    • Journal of Chest Surgery
    • /
    • v.33 no.2
    • /
    • pp.132-138
    • /
    • 2000
  • Background: Inhaled nitric oxide therapy causes selective pulmonary vasodilation in congenital heart diseases with pulmonary hypertension. However discontinuation of inhaled nitric oxide therapy may be complicated by abrupt life-threatening rebound pulmonary hypertension(RPH) The purpose of this study was to prevent by comparing group I(without RPH n=13) and group II(with RPH n=6) to determine the risk factors involved inthe development of the RPH. Material and Method: Between Januarty 6, 1998 and April 14, 1999. we studied 19 consecutive children who were treated with inhaled nitric oxide for clinically significant pulmonary hypertension after an open heart surgery for congenital heart disease. the ratio of males and females was 12:7 ranging in age from 10 days to 6040 days(16 years) To identify the effects of nitric oxide between two groups we measured heart rate mean and systolic pulmonary arterial pressure mean and systolic systemic arterial pressure central venous pressure pH paO2/FiO2 and O2 saturation before and after the initiation and just before the withdrawal of the inhaled nitric oxide. result: In 6 of 19 patients(32%) withdrawal of inhaled nitric oxide caused RPH. In the two groups inhaled nitrix oxide decreased in pulmonary arterial pressure(PAP) without decreasing the systemic arterial pressure(SAP) and increased PaO2/FiO2 Compared with patients who had no RPH(group I) patients who had RPH(group II) were older in age (1204$\pm$1688 versus 546$\pm$1654 days p<0.05) received less nitric oxide therapy(34$\pm$18 versus 67$\pm$46 hours p<0.05) has shorter weaning process(5$\pm$3 versus 15一13 hours p<0.05) and received lowerconcentration of initial nitric oxide supply(11$\pm$8 versus 17$\pm$8 ppm p>0.05) and lower concentration just before the withdrawal nitric oxide(4.2$\pm$2.6 versus 5.6$\pm$2.6 ppm, p>0.05) Conclusion : We speculate that older age shorter of nitric oxide therapy shorter weaning process are the risk factors of RPH.

  • PDF

Effect of Natural Materials on Growth and Quality of Chinese Cabbage (天然物質 處理가 배추의 生長과 品質에 미치는 영향)

  • Kim, Kyung-Je;Lee, Byung-Moo
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.4
    • /
    • pp.37-45
    • /
    • 2002
  • This study was conduction to investigate the effects of natural materials such as $GB_{10}$ chitofarm, chaff charcoal, and chaff charcoal sap, on quality and yield of chinese cabbage, Natural materials were treated on seeds soil, and leaves. The total plant weight, head weight, head length, head width, leaf length, leaf width, and sugar content of chinese cabbage in treatment with natural materials showed significant difference compared with control. The yield of chinese cabbage in $GB_{10}$ soil treatment and 1% $GB_{10}$ leaf treatment was increased 53% compared with control. The total nitrogen $P_2O_5$, $K_2O$, CaO, MgO, $Na_2O$, and Mn in total plant were analyzed. The chemical components were increased in total plant of chinese cabbage treated with natural materials compared with control natural materials increased the quality of chinese cabbage.

  • PDF

Vegetation Structure and Soil Condition of Acer okamotoanum Communities in Ulleung Island (울릉도 우산고로쇠나무 군락의 식생구조와 토양환경)

  • Kwon, Su-Duck;Kim, Jong-Kab;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.15-22
    • /
    • 2010
  • Vegetation structure and soil condition were analyzed to provide information for effective management of Acer okamotoanum community. Importance value of A. okamotoanum in upper layer was highest as 120.7, and that of Camellia japonica in middle and lower layer was highest as 61.8 and 15.7, while those of A. okamotoanum were 37.5 and 2.6, respectively. Taxus cuspidata var. latifolia which was designated as vulnerable species by Korea National Arboretum began its existence in lower layer. Species diversity and evenness were 0.674 and 0.706 in upper layer, 0.947 and 0.805 in middle layer, and 1.312 and 0.938 in lower layer, respectively. Soil pH of A. okamotoanum community was 5.79. The contents of organic matter, total N, and available $P_2O_5$ were 7.2%, 0.33%, and 51.1ppm, respectively.

Comparison of Growth Characteristics Between Natural and Plantation Stand on Acer okamotoanum (자생지와 조림지에서의 우산고로쇠나무 생장특성 비교)

  • Yoon, Jun-Hyuck;Kwon, Su-Duk;Jeon, Kwon-Seok;Kang, Jeong-Hee;Cho, Min-Gi;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.83-90
    • /
    • 2012
  • This study was undertaken to analyze 1) the growth characteristics for the optimal planting density and 2) reached ages of sap tapping for the planting timing of Acer okamotoanum in natural and plantation stand. Soil in natural stand was significantly more fertile than that of plantation stand. Early growth of A. okamotoanum in plantation stand was affected by planting density. Results showed that there was a positive relationship between the DBH and crown width in both natural and plantation stands. Reached ages by DBH were no significant difference in natural stands. Reached ages on DBH 10 cm were approximately 19 and 9 in natural and plantation stands, respectively.

Development of Crop Growth Model under Different Soil Moisture Status

  • Goto, Keita;Yabuta, Shin;Sakagami, Jun-Ichi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.19-19
    • /
    • 2019
  • It is necessary to maintain stable crop productions under the unsuitable environments, because the drought and flood may be frequently caused by the global warming. Therefore, it is agent to improve the crop growth model corresponded to soil moisture status. Chili pepper (Capsicum annuum) is one of the useful crop in Asia, and then it is affected by change of precipitation in consequence drought and flood occur however crop model to evaluate water stresses on chili pepper is not enough yet. In this study, development of crop model under different soil moisture status was attempted. The experiment was conducted on the slope fields in the greenhouse. The water level was kept at 20cm above the bottom of the container. Habanero (C. chinense) was used as material for crop model. Sap bleeding rate, SPAD value, chlorophyll content, stomatal conductance, leaf water potential, plant height, leaf area and shoot dry weight were measured at 10 days after treatment (DAT) and 13 DAT. Moreover, temperature and RH in the greenhouse, soil volume water contents (VWC) and soil water potential were measured. As a result, VWC showed 4.0% at the driest plot and 31.4% at the wettest plot at 13 DAT. The growth model was calculated using WVC and the growth analysis parameters. It was considered available, because its coefficient of determination showed 0.84 and there are significant relationship based on plants physiology among the parameters and the changes over time. Furthermore, we analyzed the important factors for higher accuracy prediction using multiple regression analysis.

  • PDF

Manual model updating of highway bridges under operational condition

  • Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • Finite element model updating is very effective procedure to determine the uncertainty parameters in structural model and minimize the differences between experimentally and numerically identified dynamic characteristics. This procedure can be practiced with manual and automatic model updating procedures. The manual model updating involves manual changes of geometry and analyses parameters by trial and error, guided by engineering judgement. Besides, the automated updating is performed by constructing a series of loops based on optimization procedures. This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges using manual model updating procedure. Birecik Highway Bridge located on the $81^{st}km$ of Şanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the arch compartment is investigated. Three dimensional finite element model of the arch compartment of the bridge is constructed using SAP2000 software to determine the dynamic characteristics, numerically. Operational Modal Analysis method is used to extract dynamic characteristics using Enhanced Frequency Domain Decomposition method. Numerically and experimentally identified dynamic characteristics are compared with each other and finite element model of the arch compartment of the bridge is updated manually by changing some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the difference between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %49.1 to %0.6 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.

Performance of APACHE IV in Medical Intensive Care Unit Patients: Comparisons with APACHE II, SAPS 3, and MPM0 III

  • Ko, Mihye;Shim, Miyoung;Lee, Sang-Min;Kim, Yujin;Yoon, Soyoung
    • Acute and Critical Care
    • /
    • v.33 no.4
    • /
    • pp.216-221
    • /
    • 2018
  • Background: In this study, we analyze the performance of the Acute Physiology and Chronic Health Evaluation (APACHE) II, APACHE IV, Simplified Acute Physiology Score (SAPS) 3, and Mortality Probability Model $(MPM)_0$ III in order to determine which system best implements data related to the severity of medical intensive care unit (ICU) patients. Methods: The present study was a retrospective investigation analyzing the discrimination and calibration of APACHE II, APACHE IV, SAPS 3, and $MPM_0$ III when used to evaluate medical ICU patients. Data were collected for 788 patients admitted to the ICU from January 1, 2015 to December 31, 2015. All patients were aged 18 years or older with ICU stays of at least 24 hours. The discrimination abilities of the three systems were evaluated using c-statistics, while calibration was evaluated by the Hosmer-Lemeshow test. A severity correction model was created using logistics regression analysis. Results: For the APACHE IV, SAPS 3, $MPM_0$ III, and APACHE II systems, the area under the receiver operating characteristic curves was 0.745 for APACHE IV, resulting in the highest discrimination among all four scoring systems. The value was 0.729 for APACHE II, 0.700 for SAP 3, and 0.670 for $MPM_0$ III. All severity scoring systems showed good calibrations: APACHE II (chi-square, 12.540; P=0.129), APACHE IV (chi-square, 6.959; P=0.541), SAPS 3 (chi-square, 9.290; P=0.318), and $MPM_0$ III (chi-square, 11.128; P=0.133). Conclusions: APACHE IV provided the best discrimination and calibration abilities and was useful for quality assessment and predicting mortality in medical ICU patients.

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Investigation on seismic isolation retrofit of a historical masonry structure

  • Artar, Musa;Coban, Keziban;Yurdakul, Muhammet;Can, Omer;Yilmaz, Fatih;Yildiz, Mehmet B.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.501-512
    • /
    • 2019
  • In this study, seismic vulnerability assessment and seismic isolation retrofit of Bayburt Yakutiye Mosque is investigated. Bayburt Yakutiye Mosque was built in the early 19th century at about 30-meter distance to Coruh river in the center of Bayburt in Turkey. The walls of historical masonry structure were built with regional white and yellow stones and the domes of the mosque was built with masonry bricks. This study is completed in four basic phases. In first phase, experimental determination of the regional white stone used in the historical structure are investigated to determine mechanical properties as modulus of elasticity, poison ratio and compression strengths etc. The required information of the other materials such as masonry brick and the regional yellow stone are obtained from literature studies. In the second phase, three dimensional finite element model (FEM) of the historical masonry structure is prepared with 4738 shell elements and 24789 solid elements in SAP2000 software. In third phase, the vulnerability assessment of the historical mosque is researched under seismic loading such as Erzincan (13 March 1992), Kocaeli (17 August 1999) and Van (23 November 2011) earthquakes. In this phase, the locations where damage can occur are determined. In the final phase, rubber base isolators for seismic isolation retrofit is used in the macro model of historical masonry mosque to prevent the damage risk. The results of all analyses are comparatively evaluated in details and presented in tables and graphs. The results show that the application of rubber base isolators can prevent to occur the destructive effect of earthquakes.

Effects of Significant Duration of Ground Motions on Seismic Responses of Base-Isolated Nuclear Power Plants (지진의 지속시간이 면진원전의 지진거동에 미치는 영향)

  • Nguyen, Duy-Duan;Thusa, Bidhek;Lee, Tae-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2019
  • The purpose of this study is to investigate the effects of the significant duration of ground motions on responses of base-isolated nuclear power plants (NPPs). Two sets of ground motion records with short duration (SD) and long duration (LD) motions, scaled to match the target response spectrum, are used to perform time-history analyses. The reactor containment building in the Advanced Power Reactor 1400 (APR1400) NPP is numerically modeled using lumped-mass stick elements in SAP2000. Seismic responses of the base-isolated NPP are monitored in forms of lateral displacements, shear forces, floor response spectra of the containment building, and hysteretic energy of the lead rubber bearing (LRB). Fragility curves for different limit states, which are defined based on the shear deformation of the base isolator, are developed. The numerical results reveal that the average seismic responses of base-isolated NPP under SD and LD motion sets were shown to be mostly identical. For PGA larger than 0.4g, the mean deformation of LRB for LD motions was bigger than that for SD ones due to a higher hysteretic energy of LRB produced in LD shakings. Under LD motions, median parameters of fragility functions for three limit states were reduced by 12% to 15% compared to that due to SD motions. This clearly indicates that it is important to select ground motions with both SD and LD proportionally in the seismic evaluation of NPP structures.