• Title/Summary/Keyword: Sanitry sewer

Search Result 1, Processing Time 0.017 seconds

Design Flow Velocity Changes According to the Design Flow Determination Methods in the Sanitary Sewer (오수관 설계유량 산정법이 설계유속에 미치는 영향)

  • Hyun, In-hwan;Won, Seung-hyun;Kim, Hyung-jun;Lee, Che-in
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.749-757
    • /
    • 2005
  • The present study analyzed actual cases of designed flow estimation method and designed flow rate of sewage pipe lines. In order to examine the effects of peak-hour demand factor estimation with given daily highest peak loading, we analyzed its effects on designed flow rate with changing the peak-hour demand factor from 2.0 to 10.0. The results of this study are as follows. When reviewing the recent designs, we found that 59.4% of pipe line with 250mm and 300mm diameter, which fall under minimum allowable pipeline did not meet the minimum velocity which is specified as 0.6m/sec in design standards. The pipe line that have minimal access population or have very low slope did not satisfy the minimum velocity. In estimating the designed sewage flow, the applied daily highest peak loading and hourly highest peaking loading were the load factor for the entire population of the planned area, and for the peak loading of the initial pipes connected to a very small population, we applied the same factor as that applied to the entire area and, as a result, the hourly highest flow was underestimated. Because, in case of the initial pipes, the method of applying the same peak loading to all subject areas is highly possible to produce underestimated design flow, when estimating the designed flow of the initial pipes connected to a small population need to adopt a rational flow factor according to the size of population. For this, it is considered to investigate and analyze raw data on daily and hourly variation of sewage flow.