• Title/Summary/Keyword: Sanitizers and Disinfectants

Search Result 23, Processing Time 0.019 seconds

An Investigation of Ingredients and Hazardous Substances in Some Consumer Products - Focusing on Cleaners and Disinfectants - (일부 생활화학용품에 함유된 성분 및 유해물질 조사 - 세정제와 소독제를 중심으로 -)

  • Heo, Da-An;Huh, Eun-Hae;Park, Ji Young;Moon, Kyong Whan;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.314-326
    • /
    • 2015
  • Objectives: This study was conducted to identify the ingredients used in ten consumer product categories and determine hazardous substances among these ingredients. Methods: A total of 542 commercial products in ten consumer product categories were selected. The consumer products were sticker removers, washing machine cleaners, multi-purpose cleaners, mold removers, glass cleaners, chlorinated sanitizers, air conditioner cleaners, disposal cleaners, drain cleaners and disinfectant sprays. The company list was complied from governmental records and a market survey. The respective companies were contacted for a list of ingredients found in the 542 products. Results: The corresponding companies listed 163 ingredients. According to European Union (EU) Directive 67/548/EEC, 38 of the 163 ingredients were classified as dangerous substances. Among these substances, 28 ingredients were hazardous to the skin, 15 were hazardous to the eye, and nine were hazardous if inhaled. Three ingredients were classified as CMR (carcinogenic, mutagenic or toxic for reproduction) substances: liquefied petroleum gases (LPG) with carcinogenicity and mutagenicity, and VM&P naphtha and ligroine with carcinogenicity. Conclusion: Various chemicals, including hazardous substances, were used in consumer products. Risk assessment of consumer products is required in order to protect the population from health risks.

Evaluation of Efficacy and Development of Predictive Reduction Models for Escherichia coli and Staphylococcus aureus on Food Contact Surfaces as a Function of Concentration and Contact Time of Chlorine Dioxide (대장균과 황색포도상구균에 대한 이산화염소의 살균소독력 평가 및 살균예측모델 개발)

  • Yoon, So-Jeong;Park, Shin Young;Kim, Yong-Soo;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.507-512
    • /
    • 2017
  • There has been increasing concern regarding misuse of disinfectants and sanitizers such as ethanol, sodium hypochlorite, and hydrogen peroxide for food contact surfaces in the food industry. Examining the efficacy of the concentration of currently used disinfectants and sanitizers is urgently required in the Korean society. This study aimed to develop predictive reduction models for Escherichia coli and Staphylococcus aureus in suspension, as a function of $ClO_2$ (chlorine dioxide) and contact time using response surface methodology. E. coli ATCC 10536 and S. aureus ATCC 6538 (initial inoculum, 8-9 log CFU/mL) in tryptic soy broth were treated with different concentrations of $ClO_2$ (5, 20, and 35 ppm) for different contact times (1, 3, and 5 min) following a central composite design. The polynomial reduction models for $ClO_2$ on E. coli and S. aureus were developed under the clean condition. E. coli reduction by 35 ppm $ClO_2$ for 1, 3, and 5 min was 2.49, 2.70, and 3.65 log CFU/mL, respectively. Also, S. aureus reduction by 35 ppm $ClO_2$ for 1, 3, and 5 min was 4.59, 5.25, and 5.81 log CFU/mL, respectively. The predictive response polynomial models developed were $R=0.43231-0.056492^*X_1-0.097771^*X_2+9.24167E-003^*X_1^*X_2+3.06333E-003^*X_1{^2}$ ($R^2=0.98$) on E. coli and $R=1.10542-0.20896^*X_1-0.046062^*X_2+8.30000E-003^*X_1^*X_2+8.73300E-003^*X_1{^2}$ ($R^2=0.99$) on S. aureus, where R was the bacterial reduction (log CFU/mL), $X_1$ was the concentration and $X_2$ was the contact time. Our predictive reduction models should be validated in developing the optimal concentration and contact time of $ClO_2$ for inhibiting E. coli and S. aureus on food contact surfaces.

Evaluation of Efficacy and Development of Predictive Model of Sanitizers and Disinfectants on Reduction of Microorganisms on Food Contact Surfaces (스테인리스 스틸 식품기구 표면에 사용되는 주요 살균소독제의 살균력 평가 및 살균예측모델 개발)

  • Lee, Yu-Si;Ha, Sang-Do;Kim, Dong-Ho;Park, Joon-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.203-208
    • /
    • 2011
  • This study was to evaluate the efficacy of sanitizer concentrations and treatment time against two major toad-borne pathogenic microorganisms such as Escherichia coli and Staphylococcus aureus on a stainless steel surface. As a result, stainless steel, treated with 100 ppm of chlorine showed reduction of E. coli(1.56, 1.49, 1.95 log cfu/25 $cm^2$) and S. aureus(0.49, 0.88, 1.27 log cfu/25 $cm^2$) after 0, 5 and 10 min, but none was not detected in treatment with 200 ppm. The population of E. coli(0.73, 0.90, 1.55 log cfu/25 $cm^2$) and S. aureus(0.37, 1.00, 1.45 log cfu/25 $cm^2$) reduced in 35.5% ethanol treated group, but none was not detected in treatment with 70%. The population was reduced E coli(0.28, 0.64, 1.07 cfu/25 $cm^2$) and S. aureus(0.53, 0.87, 0.99 log cfu/25 $cm^2$) by treatment with 45.5 ppm of hydrogen peroxide, but none was not detected in treatment with 91 ppm. Quarternary ammonium compound with 100 ppm was reduced E. coli(0.82, 1.62, 1.71 log cfu/25 $cm^2$) and S. aureus(0.46, 0.93, 1.38 log cfu/25 $cm^2$), but none was not detected in treatment with 200 ppm. Predictive models of sterilization for all 4 disinfectants were suitable to use with $r^2$ value of higher than 0.94. These models may be of use to food services and manufacture of safe products by controlling E. coli and S. aureus without the need for further detection of the organisms.