• Title/Summary/Keyword: Sanger sequencing

Search Result 76, Processing Time 0.022 seconds

A Case of Late-onset Episodic Myopathic Form with Intermittent Rhabdomyolysis of Very-long-chain acyl-coenzyme A Dehydrogenase (VLCAD) Deficiency Diagnosed by Multigene Panel Sequencing (유전자패널 시퀀싱으로 진단된 성인형 very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) 결핍증 증례)

  • Sohn, Young Bae;Ahn, Sunhyun;Jang, Ja-Hyun;Lee, Sae-Mi
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.19 no.1
    • /
    • pp.20-25
    • /
    • 2019
  • Very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (OMIM#201475) is an autosomal recessively inherited metabolic disorder of mitochondrial long-chain fatty acid oxidation. The clinical features of VLCAD deficiency is classified by three clinical forms according to the severity. Here, we report a case of later-onset episodic myopathic form of VLCAD deficiency whose diagnosis was confirmed by plasma acylcarnitine analysis and" multigene panel multigene panel sequencing. A 34-year old female patient visited genetics clinic for genetic evaluation for history of recurrent myopathy with intermittent rhabdomyolysis. She suffered first episode of rhabdomyolysis with acute renal failure requiring hemodialysis at twelve years old. After then, she suffered several times of recurrent rhabdomyolysis provoked by prolonged exercise or fasting. Physical and neurologic exam was normal. Serum AST/ALT and creatinine kinase (CK) levels were mildly elevated. However, according to her previous medical records, her AST/ALT, CK were highly elevated when she had rhabdomyolysis. In suspicion of fatty acid oxidation disorder, multigene panel sequencing and plasma acylcarnitine analysis were performed in non-fasting, asymptomatic condition for the differential diagnosis. Plasma acylcarnitine analysis revealed elevated levels of C14:1 ($1.453{\mu}mol/L$; reference, 0.044-0.285), and C14:2 ($0.323{\mu}mol/L$; 0.032-0.301) and upper normal level of C14 ($0.841{\mu}mol/L$; 0.065 -0.920). Two heterozygous mutation in ACADVL were detected by multigene panel sequencing and confirmed by Sanger sequencing: c.[1202G>A(;) 1349G>A] (p.[(Ser 401Asn)(;)(Arg450His)]). Diagnosis of VLCAD deficiency was confirmed and frequent meal with low-fat diet was educated for preventing acute metabolic derangement. Fatty acid oxidation disorders have diagnostic challenges due to their intermittent clinical and laboratorial presentations, especially in milder late-onset forms. We suggest that multigene panel sequencing could be a useful diagnostic tool for the genetically and clinically heterogeneous fatty acid oxidation disorders.

  • PDF

Analysis on the nucleotide sequence of the signal region of bacillus subitilis extracellular cellulase gene (Bacillus subtilis로 부터 분리한 cellulase 유전자의 조절부위에 대한 염기서열분석)

  • 서연수;이영호;백운화;강현삼
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.236-242
    • /
    • 1986
  • The nucleotide sequence of the genetic control site of Bacillus subtilis gene for $(1-4)-{\beta}-D-glucan$ endoglucanase (cellulase) was determined according to the procedures of the dideoxy chain termination method(Sanger et. al., 1977). The deduced amino acid sequence of this enzyme has a hydrophobic signal peptide at the $NH_2$ terminus similar to those found in fifteen other extracellualr enzymes from Bacillus species. This is followed by a sequence resembling the Bacillus ribosome binding site 14 nucleotide before the first codon of the gene. The presumptive promoter sequence was located 92 base pairs upstream fromthe initiation codon. The homology region in signal sequences was striking when comparing all the signal sequences of sixteen extracellular enzymes from Bacillus species so far compiled.

  • PDF

Maturity-onset diabetes of the young: update and perspectives on diagnosis and treatment

  • Jang, Kyung Mi
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • Maturity-onset diabetes of the young (MODY) is a clinically heterogeneous group of monogenic disorders characterized by ß-cell dysfunction. MODY accounts for between 2% and 5% of all diabetes cases, and distinguishing it from type 1 or type 2 diabetes is a diagnostic challenge. Recently, MODY-causing mutations have been identified in 14 different genes. Sanger DNA sequencing is the gold standard for identifying the mutations in MODY-related genes, and may facilitate the diagnosis. Despite the lower frequency among diabetes mellitus cases, a correct genetic diagnosis of MODY is important for optimizing treatment strategies. There is a discrepancy in the disease-causing locus between the Asian and Caucasian patients with MODY. Furthermore, the prevalence of the disease in Asian populations remains to be studied. In this review, the current understanding of MODY is summarized and the Asian studies of MODY are discussed in detail.

Isolation and Characterization of a CDNA Encoding a Protein Homologous to the Mouse 70 kDa Heat Shock Protein (생쥐 섬 유아세포에서 70 kDa 고온충격 단백질의 CDNA 클로닝과 염기서열 분석)

  • 김창환;정선미최준호
    • The Korean Journal of Zoology
    • /
    • v.35 no.2
    • /
    • pp.203-210
    • /
    • 1992
  • Hsp70, a 70 kDa protein, is the maior protein expressed when cells are heat-shocked. A cDNA library from mouse ID13 cells was screened with the human hsp70 gene as a probe, and a positive clone was obtained. The positive clone was subcloned into puc19 and the precise restriction was obtained. The CDNA was sequenced by the Sanger's dideoxv termination method. Single open reading frame that codes for a protein of 70 kDa was found. The DNA sequence of the cloned mouse DNA shows great homology (66-90%) with other mouse hsp70 genes and somewhat less homology (50",) with E. coli hsp70 gene (dnak). With the exception of one amino acid, the protein sequence deduced from the CDNA is identical to the mouse that shock cognate protein 70 (hsc70) that is constitutivelv expressed at normal temperature. The result suggests that the cloned CDNA encodes a hsc70 family rather than a heatinducible family.mily.

  • PDF

The first Korean case with Floating-Harbor syndrome with a novel SRCAP mutation diagnosed by targeted exome sequencing

  • Choi, Eun Mi;Lee, Dong Hyun;Kang, Seok Jin;Shim, Ye Jee;Kim, Heung Sik;Kim, Joon Sik;Jeong, Jong In;Ha, Jung-Sook;Jang, Ja-Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.12
    • /
    • pp.403-406
    • /
    • 2018
  • Floating-Harbor syndrome is a rare autosomal dominant genetic disorder associated with SRCAP mutation. To date, approximately 50 cases of Floating-Harbor syndrome have been reported, but none have been reported in Korea yet. Floating-Harbor syndrome is characterized by delayed bony maturation, unique facial features, and language impairment. Here, we present a 6-year-old boy with a triangular face, deep-set protruding eyes, low-set ears, wide nose with narrow nasal bridge, short philtrum, long thin lips, clinodactyly, and developmental delay that was transferred to our pediatric clinic for genetic evaluation. He showed progressive delay in the area of language and cognition-adaption as he grew. He had previously undergone chromosomal analysis at another hospital due to his language delay, but his karyotype was normal. We performed targeted exome sequencing, considering several syndromes with similar phenotypes. Library preparation was performed with the TruSight One sequencing panel, which enriches the sample for about 4,800 genes of clinical relevance. Massively parallel sequencing was conducted with NextSeq. An identified variant was confirmed by Sanger sequencing of the patient and his parents. Finally, the patient was confirmed as the first Korean case of Floating-Harbor syndrome with a novel SRCAP (Snf2 related CREBBP activator protein) mutation (c.7732dupT, p.Ser2578Phefs*6), resulting in early termination of the protein; it was not found in either of his healthy parents or a control population. To our knowledge, this is the first study to describe a boy with Floating-Harbor syndrome with a novel SRCAP mutation diagnosed by targeted exome sequencing in Korea.

A novel homozygous mutation in SZT2 gene in Saudi family with developmental delay, macrocephaly and epilepsy

  • Naseer, Muhammad Imran;Alwasiyah, Mohammad Khalid;Abdulkareem, Angham Abdulrahman;Bajammal, Rayan Abdullah;Trujillo, Carlos;Abu-Elmagd, Muhammad;Jafri, Mohammad Alam;Chaudhary, Adeel G.;Al-Qahtani, Mohammad H.
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1149-1155
    • /
    • 2018
  • Epileptic encephalopathies are genetically heterogeneous disorders which leads to epilepsy and cause neurological disorders. Seizure threshold 2 (SZT2) gene located on chromosome 1p34.2 encodes protein mainly expressed predominantly in the parietal and frontal cortex and dorsal root ganglia in the brain. Previous studies in mice showed that mutation in this gene can confers low seizure threshold, enhance epileptogenesis and in human may leads to facial dysmorphism, intellectual disability, seizure and macrocephaly. Objective of this study was to find out novel gene or novel mutation related to the gene phenotype. We have identified a large consanguineous Saudi family segregating developmental delay, intellectual disability, epilepsy, high forehead and macrocephaly. Exome sequencing was performed in affected siblings of the family to study the novel mutation. Whole exome sequencing data analysis, confirmed by subsequent Sanger sequencing validation study. Our results showed a novel homozygous mutation (c.9368G>A) in a substitution of a conserved glycine residue into a glutamic acid in the exon 67 of SZT2 gene. The mutation was ruled out in 100 unrelated healthy controls. The missense variant has not yet been reported as pathogenic in literature or variant databases. In conclusion, the here detected homozygous SZT2 variant might be the causative mutation that further explain epilepsy and developmental delay in this Saudi family.

Identification of a novel heterozygous mutation of ACAN in a Korean family with proportionate short stature

  • Kim, Yoo-Mi;Cheon, Chong Kun;Lim, Han Hyuk;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.102-106
    • /
    • 2018
  • Aggrecan is a proteoglycan in the extracellular matrix of growth plate and cartilaginous tissues. Aggrecanopathy has been reported as a genetic cause not only for severe skeletal dysplasia but also for autosomal dominant short stature with normal to advanced bone age. We report a novel heterozygous mutation of ACAN in a Korean family with proportionate short stature identified through targeted exome sequencing. We present a girl of 4 years and 9 months with a family history of short stature over three generations. The paternal grandmother is 143 cm tall (-3.8 as a Korean standard deviation score [SDS]), the father 155 cm (-3.4 SDS), and the index case 96.2 cm (-2.9 SDS). Evaluation for short stature showed normal growth hormone (GH) peaks in the GH provocation test and a mild delayed bone age for chronological age. This subject had clinical characteristics including a triangular face, flat nasal bridge, prognathia, blue sclerae, and brittle teeth. The targeted exome sequencing was applied to detect autosomal dominant growth palate disorder. The novel variant c.910G>A (p.Asp304Asn) in ACAN was identified and this variant was found in the subject's father using Sanger sequencing. This is the first case of Korean familial short stature due to ACAN mutation. ACAN should be considered for proportionate idiopathic short stature, especially in cases of familial short stature.

A new type of oculocutaneous albinism with a novel OCA2 mutation

  • Lee, Sang Yoon;Lee, Eun Joo;Byun, Jun Chul;Jang, Kyung Mi;Kim, Sae Yoon;Hwang, Su-Kyeong
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.2
    • /
    • pp.160-164
    • /
    • 2021
  • Oculocutaneous albinism (OCA) is a group of rare genetically heterogeneous disorders, characterized by hypopigmentation of the eyes, skin, and hair, which result in ocular abnormalities and a risk of developing skin cancer. Currently, there is no ophthalmologic procedure or drug that prevents the clinical features of OCA. Here, we report a new type of OCA in two, unrelated Korean families with the same OCA2 mutation. Affected individuals in this study are different from those of previous reports in two aspects: an inheritance pattern and clinical presentation. All reported patients with OCA have shown an autosomal recessive inheritance pattern, while our patients showed an autosomal dominant inheritance pattern. Small amounts of pigment can be acquired with age in OCA, but there is no substantial variation from adolescence to adulthood in this regard. A case where the patient attained normal pigmentation levels has never been reported. However, our patients displayed completely normal pigmentation in their late twenties. Whole exome sequencing and in-silico analysis revealed a novel mutation, OCA2 c.2338G>A p.(G780S) (NM_000275) with a high likelihood of pathogenicity. Sanger sequencing of p.G780S identified the same mutation in the affected individuals, which was not found in the family members with normal phenotype. We hypothesize that OCA2 G780S not only acts as a pathogenic variant of OCA but also induces pigmentation by enhancing the melanogenesis gene expression of other modifier genes, such as SLC45A2 and TPC2. These findings may provide further understanding of melanin biosynthesis and new treatment methods for OCA.

Development and Verification of and Single Nucleotide Polymorphism Markers toDetermine Country of Origin of Korean and Chinese Scapharca subcrenata (한국산과 중국산 새꼬막(Scapharca subcrenata)의 원산지 판별을 위한 SNP 마커의 개발 및 검증)

  • Seong Seok Choi;Seung Hyun Yoo;Yong Bae Seo;Jong Oh Kim;Ik Jung Kwon;So Hee Bae;Gun Do Kim
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1025-1035
    • /
    • 2023
  • In this study, we analyzed SNPs that appear between Korean and Chinese Scapharca subcrenata using the nucleotide sequence data of S. subcrenata analyzed by genotyping by sequencing (GBS). To distinguish the country of origin for S. subcrenata in Korean and Chinese, we developed a primer set as single nucleotide polymorphism (SNP) markers for quantitative real-time PCR (qPCR) analysis and validated by sequencing SNPs. A total of 180 samples of S. subcrenata were analyzed by genotyping by sequencing, and 15 candidate SNPs were selected. SNP marker selection for country of origin were identified through real-time qPCR. Insertion 1 and SNP 21 markers showed the most distinct separation between the sequence types as well as the country of origin through qPCR, with the observed amplification patterns matching the expected outcomes.. Additionally, in a blind test conducted by mixing samples of S. subcrenata at random, Insertion 1 showed 74% accuracy, 52% sensitivity, and 96% specificity, and SNP 21 showed 86% accuracy, 79% sensitivity, and 93% specificity. Therefore, the two SNP markers developed are expected to be useful in verifying the authenticity of the country of origin of S. subcrenata when used independently or in combination.

A newborn girl with harlequin ichthyosis genetically confirmed by ABCA12 analysis

  • Kim, Jihye;Ko, Jung Min;Shin, Seung Han;Kim, Ee-Kyung;Kim, Han-Suk
    • Journal of Genetic Medicine
    • /
    • v.16 no.2
    • /
    • pp.62-66
    • /
    • 2019
  • Harlequin ichthyosis (HI, OMIM #242500) is one of the most severe skin diseases among the autosomal recessive congenital ichthyoses, with high morbidity and mortality, particularly in newborns. Clinically, it is characterized by a typical appearance of generalized, thick, yellowish, hyperkeratotic plates with deep erythematous fissures on the skin. Herein, we present the case of a newborn girl with HI that was genetically confirmed by targeted gene panel analysis. The premature baby was encased in an opaque white membrane with erosion covering the skin of the entire body except the lips, with her hands and feet restricted by the membrane. Humidification, emollient, and retinoic acid treatment were started; the thick ichthyosis gradually peeled off and the underlying skin was only covered with thin scales. Targeted gene panel analysis using next-generation sequencing and validation with Sanger sequencing and quantitative polymerase chain reaction analyses confirmed compound heterozygous mutations of the ABCA12 gene (p.N1380S and a partial gene deletion encompassing exon 9). The parents were carriers for each of the identified mutations. Early recognition of the genetic etiology of congenital ichthyosis can, thus, facilitate genetic counseling for patients and their families.