• Title/Summary/Keyword: Sandwich core

Search Result 516, Processing Time 0.021 seconds

Design Optimization of Blast and Ballistic Impact Resistance Sandwich Panels Based on Kriging Approximate Models (크리깅 근사모델기반 복합충격 저항 샌드위치 패널 최적설계)

  • Jang, Sungwoo;Baik, Woon-Kyoung;Choi, Hae-Jin;Park, Soon Suk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • Sandwich panels consisting of various materials have widely been applied for mitigating dynamic impacts such as ballistic and blast impacts. Especially, the selection of materials for different core set-ups can directly influence its performance. In this study, we design the sandwich panels for alleviating ballistic and blast impacts by controlling the stacking sequence of core materials and their thicknesses. FEM studies are performed to simulate the dynamic behavior of sandwich panels subjected to ballistic and blast impacts. Delamination between the core layers is also considered in the FEM studies for feasible design. Based on the FEM data, kriging models are generated for approximating design space and quickly predicting the FEM outputs. Finally, design optimizations are implemented to find the optimum stacking sequence of core materials and thicknesses with given impact situations.

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R.;Pandey, K.M.;Dey, S.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.197-210
    • /
    • 2019
  • Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator

  • Rostami, Rasoul;Mohamadimehr, Mehdi;Rahaghi, Mohsen Irani
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.225-237
    • /
    • 2019
  • In this research, the dynamic stability and nonlinear vibration behavior of a smart rotating sandwich cylindrical shell is studied. The core of the structure is a functionally graded material (FGM) which is integrated by functionally graded piezoelectric material (FGPM) layers subjected to electric field. The piezoelectric layers at the inner and outer surfaces used as actuator and sensor, respectively. By applying the energy method and Hamilton's principle, the governing equations of sandwich cylindrical shell derived based on first-order shear deformation theory (FSDT). The Galerkin method is used to discriminate the motion equations and the equations are converted to the form of the ordinary differential equations in terms of time. The perturbation method is employed to find the relation between nonlinear frequency and the amplitude of vibration. The main objective of this research is to determine the nonlinear frequencies and nonlinear vibration control by using sensor and actuator layers. The effects of geometrical parameters, power law index of core, sensor and actuator layers, angular velocity and scale transformation parameter on nonlinear frequency-amplitude response diagram and dynamic stability of sandwich cylindrical shell are investigated. The results of this research can be used to design and vibration control of rotating systems in various industries such as aircraft, biomechanics and automobile manufacturing.

A numerical study on nonlinear stability of higher-order sandwich beams with cellular core and nanocomposite face sheets

  • Ding, Ke;Jia, Hu;Xu, Jun;Liu, Yi;Al-Tamimi, Haneen M.;Khadimallah, Mohamed Amine
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.465-473
    • /
    • 2022
  • In this research, a numerical study has been provided for examining the nonlinear stability behaviors of sandwich beams having a cellular core and two face sheets made of nanocomposites. The nonlinear stability behaviors of the sandwich beam having geometrically perfect/imperfect shapes have been studied when it is subjected to a compressive buckling load. The nanocomposite face sheets are made of epoxy reinforced by graphene oxide powders (GOPs). Also, the core has the shape of a honeycomb with regular configuration. Using finite element method based on a higher-order deformation beam element, the system of equations of motions have been solved to derive the stability curves. Several parameters such as face sheet thickness, core wall thickness, graphene oxide amount and boundary conditions have remarkable influences on stability curves of geometrically perfect/imperfect sandwich beams.

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 2: Finite element analysis

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1001-1021
    • /
    • 2015
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1,450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. This paper investigates the structural performances of SCS sandwich composite beams with ULCC as filled material. Overlapped headed shear studs were used to provide shear and tensile bond between the face plate and the lightweight core. Three-dimensional nonlinear finite element (FE) model was developed for the ultimate strength analysis of such SCS sandwich composite beams. The accuracy of the FE analysis was established by comparing the predicted results with the quasi-static tests on the SCS sandwich beams. The FE model was also applied to the nonlinear analysis on curved SCS sandwich beam and shells and the SCS sandwich beams with J-hook connectors and different concrete core including ULCC, lightweight concrete (LWC) and normal weight concrete (NWC). Validations were also carried out to check the accuracy of the FE analysis on the SCS sandwich beams with J-hook connectors and curved SCS sandwich structure. Finally, recommended FE analysis procedures were given.

Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings

  • Rahmani, Mohsen;Mohammadi, Younes;Kakavand, Farshad
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.239-252
    • /
    • 2019
  • Since conical sandwich shells are important structures in the modern industries, in this paper, for the first time, vibration behavior of the truncated conical sandwich shells which include temperature dependent porous FG face sheets and temperature dependent homogeneous core in various thermal conditions are investigated. A high order theory of sandwich shells which modified by considering the flexibility of the core and nonlinear von Karman strains are utilized. Power law rule which modified by considering the two types of porosity volume fractions are applied to model the functionally graded materials. By utilizing the Hamilton's energy principle, and considering the in-plane and thermal stresses in the face-sheets and the core, the governing equations are obtained. A Galerkin procedure is used to solve the equations in a simply supported boundary condition. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of this study, they are compared with FEM results obtained by Abaqus software and for special cases with the results in literatures. Eigen frequencies variations are surveyed versus the temperature changing, geometrical effects, porosity, and some others in the numerical examples.

Axisymmetric dynamic instability of polar orthotropic sandwich annular plate with ER damping treatment

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.25-39
    • /
    • 2014
  • The axisymmetric dynamic instability of polar orthotropic sandwich annular plate combined with electrorheological (ER) fluid core layer and constraining layer are studied in this paper. And, the ER core layer and constraining layer are used to improve the stability of the annular plate system. The boundaries of instability regions for the polar orthotropic sandwich annular plate system are obtained by discrete layer annular finite element and the harmonic balance method. The rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be controlled by applying different electric field strength. Thus, the damping characteristics of the sandwich system are more effective when the electric field is applied on the sandwich structure. Additionally, variations of the instability regions for the polar orthotropic sandwich annular plate with different applying electric field strength, thickness of ER layer and some designed parameters are investigated and discussed in this study.

Selection of design variables in the Sandwich Beam for load resistance (하중에 대한 샌드위치보의 디자인 변수 선택)

  • Kim, Jongman;Hwang, Hyo-Kune;Lee, Jin-Woo;Kim, Wae-Yeule
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.198-201
    • /
    • 2002
  • It has been well-blown that sandwich structures are efficient to resist bending loads by increasing the moment of inertia of the panel. However, the accurate theoretical prediction of failure load and its optimization of sandwich beams for strength under concentrated loads were so complicated. Moreover, the appropriate selection of the variables, such as face thickness, core density and core thickness of the sandwich beam with many theories has continuously researched to satisfy for the given strength to weight structural requirement. There will be interesting to investigate the effect of those variables with its optimization for the load resistance.

  • PDF