• Title/Summary/Keyword: Sandstone

Search Result 341, Processing Time 0.034 seconds

A Study on Alumina Nanoparticle Dispersion for Improving Injectivity and Storativity of CO2 in Depleted Gas Reservoirs (고갈 가스전에서 CO2 주입성 및 저장성 향상을 위한 알루미나 나노입자의 분산 특성 연구)

  • Seonghak Cho;Chayoung Song;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • In this study, the Al2O3 nanofluid was synthesized as an additive for improving the injection efficiency and storage capacity of carbon dioxide (CO2) in a depleted sandstone reservoir or deep saline aquifer. As the base fluid, deionized water (DIW) and saline prepared by referring to the composition of API Brine were used, and the fluid was synthesized by using Al2O3 nanofluid with CTAB (cetyltrimethyl-ammonium bromide), a cationic surfactant. After that, the dispersion stability was evaluated by using visual observation, dynamic light scattering (DLS), transmission electron microscope (TEM), and miscibility test. As a result, it was presented that stable nanofluid without agglomeration and precipitation after reaction with 70,000 ppm of brine could be synthesized when the nanoparticle concentration was 0.05 wt% or less.

Seepage characteristics of the leaching solution during in situ leaching of uranium

  • Sheng Zeng ;Jiayin Song ;Bing Sun;Fulin Wang ;Wenhao Ye;Yuan Shen;Hao Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.566-574
    • /
    • 2023
  • Investigating the seepage characteristics of the leaching solution in the ore-bearing layer during the in situ leaching process can be useful for designing the process parameters for the uranium mining well. We prepared leaching solutions of four different viscosities and conducted experiments using a self-developed multifunctional uranium ore seepage test device. The effects of different viscosities of leaching solutions on the seepage characteristics of uranium-bearing sandstones were examined using seepage mechanics, physicochemical seepage theory, and dissolution erosion mechanism. Results indicated that while the seepage characteristics of various viscosities of leaching solutions were the same in rock samples with similar internal pore architectures, there were regular differences between the saturated and the unsaturated stages. In addition, the time required for the specimen to reach saturation varied with the viscosity of the leaching solution. The higher the viscosity of the solution, the slower the seepage flow from the unsaturated stage to the saturated stage. Furthermore, during the saturation stage, the seepage pressure of a leaching solution with a high viscosity was greater than that of a leaching solution with a low viscosity. However, the permeability coefficient of the high viscosity leaching solution was less than that of a low viscosity leaching solution.

Thickness Estimation of Transition Layer using Deep Learning (심층학습을 이용한 전이대 두께 예측)

  • Seonghyung Jang;Donghoon Lee;Byoungyeop Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.199-210
    • /
    • 2023
  • The physical properties of rocks in reservoirs change after CO2 injection, we modeled a reservoir with a transition zone within which the physical properties change linearly. The function of the Wolf reflection coefficient consists of the velocity ratio of the upper and lower layers, the frequency, and the thickness of the transition zone. This function can be used to estimate the thickness of a reservoir or seafloor transition zone. In this study, we propose a method for predicting the thickness of the transition zone using deep learning. To apply deep learning, we modeled the thickness-dependent Wolf reflection coefficient on an artificial transition zone formation model consisting of sandstone reservoir and shale cap rock and generated time-frequency spectral images using the continuous wavelet transform. Although thickness estimation performed by comparing spectral images according to different thicknesses and a spectral image from a trace of the seismic stack did not always provide accurate thicknesses, it can be applied to field data by obtaining training data in various environments and thus improving its accuracy.

Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions

  • Luyuan Wu;Meng Li;Jianwei Zhang;Zifa Wang;Xiaohui Yang;Hanliang Bian
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.

The gene expression programming method for estimating compressive strength of rocks

  • Ibrahim Albaijan;Daria K. Voronkova;Laith R. Flaih;Meshel Q. Alkahtani;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.465-474
    • /
    • 2024
  • Uniaxial compressive strength (UCS) is a critical geomechanical parameter that plays a significant role in the evaluation of rocks. The practice of indirectly estimating said characteristics is widespread due to the challenges associated with obtaining high-quality core samples. The primary aim of this study is to investigate the feasibility of utilizing the gene expression programming (GEP) technique for the purpose of forecasting the UCS for various rock categories, including Schist, Granite, Claystone, Travertine, Sandstone, Slate, Limestone, Marl, and Dolomite, which were sourced from a wide range of quarry sites. The present study utilized a total of 170 datasets, comprising Schmidt hammer (SH), porosity (n), point load index (Is(50)), and P-wave velocity (Vp), as the effective parameters in the model to determine their impact on the UCS. The UCS parameter was computed through the utilization of the GEP model, resulting in the generation of an equation. Subsequently, the efficacy of the GEP model and the resultant equation were assessed using various statistical evaluation metrics to determine their predictive capabilities. The outcomes indicate the prospective capacity of the GEP model and the resultant equation in forecasting the unconfined compressive strength (UCS). The significance of this study lies in its ability to enable geotechnical engineers to make estimations of the UCS of rocks, without the requirement of conducting expensive and time-consuming experimental tests. In particular, a user-friendly program was developed based on the GEP model to enable rapid and very accurate calculation of rock's UCS, doing away with the necessity for costly and time-consuming laboratory experiments.

Analysis for Rainfall Infiltration Using Electrical Resistivity Monitoring Survey (강우 침투 특성 분석을 위한 전기비저항 모니터링 탐사)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Park, Dug-Keun;Yoon, Yeo-Jin;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.41-53
    • /
    • 2012
  • During rainfall period, to identify the characteristics of the infiltration of moisture, electrical resistivity monitering survey was carried out to weathered zone. Four regions of geophysical exploration areas with different rock types, four regions were selected. An area consists of mafic granite and three areas are composed of sedimentary rocks (Sandstone, Shale, Unconsolidated Mudstone). Survey was conducted from June (rainy season) to November (dry season), and during the period the change in resistivity was observed. According to the result of monitoring exploration on Geumjeong and Jinju areas, for the estimation of the standard rainfall, it is necessary to estimate the effects of the antecedent rainfall during the rainy season based on the overall rainfall from June till October and also necessary to consider this for the estimation of the half period. Also, the vertical distribution of the low resistivity anomaly zone does not show that the infiltration of moisture does not occur uniformly from the surface of the ground to the lower ground but shows that it occurs along the relaxed gap of the crack or soil stratum of the weathering zone. In Pohang area, the type of moisture infiltration is different from that of the granite or sedimentary rock. Since, after the rainfall, the rate of infiltration to the lower ground is high and the period of cultivation to the lower bedrock aquifer is short, it has similar effect to that of the antecedent rainfall applied for the estimation of the standard rainfall being presently used. In Danyang, due to the degree of water content of the ground, the duration period of the low resistivity anomaly zone observed in the lower ground of the place where clastic sedimentary rock is distributed is similar to that in Pohang area. The degree of lateral water diffusion at the time of localized heavy rain is the same as that of the sedimentary rock in Jinju. According to the above analysis results, in Danyang area, the period when the antecedent rainfall has its influence is estimated as three weeks or so.

Studies on the Mineralogical Characteristics of Apple Orchard Soils (사과원토양(園土壤)의 광물학적특성(鑛物學的特性)에 관(關)한 연구(硏究))

  • Lee, Mahn Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.3
    • /
    • pp.141-152
    • /
    • 1973
  • The mineralogical studies of the eleven sub-soil samples derived from granite, granodiorite, diorite and arkose sandstone, taken from apple orchards in the province of Kyungsangbukdo, Korea are made to investigate the relationships between the mineral weathering, soil forming processes and mineralogical composition. The fine sand fraction (less than 0.2mm) and the clay fraction (less than 2 micron) are dispersed with the shaker after hydrogen peroxide treatment for the removal of organic matter, and separated from each suspension by gravity sedimentation. The fine sand are observed by mineral microscope and the clay are observed by X-ray diffraction patterns, differential thermal analysis curves and infrared spectrum. The outline of the results are as follows. 1. The primary minerals ; Quartz, changed-feldspar, plagioclase, alkali-feldspar are dominant in almost all samples, and some samples contain an appreciable amount of hornblende, biotite, muscovite and plant opal. There are also those samples which contain very small quantity of pyroxene group, tourmaline, epidote, cyanite, magnetite, volcanic glass and zircon. They are mainly derived from weathering products of granite, granodiorite, diorite, arkose or its mixtures. 2. All samples contain expanding or nonexpanding $14{\AA}$ minerals, illite and kaolin minerals, and some samples contain chlorite, cristobalite, gibbsite, and those primary minerals as quartz and feldspar, but the quantities vary according to the parent matrials. 3. Non-expanding $14{\AA}$ minerals may be dioctahadral vermiculite which sandwiches gibbsite layer or chlorite in between layer lattices. 4. As for clay minerals, montmorillonite was principal component in the samples derived from weathering products of arkose sandstone and tertiary. Minerals which are derived from weathering products of arkose have kaolin minerals and vermiculite as their principal component, and minerals derived from weathering products of acidic rock group are generally classified into two groups, the kaolin mineral group, and the kaolin minerals and vermiculite group.

  • PDF

Baseline Survey Seismic Attribute Analysis for CO2 Monitoring on the Aquistore CCS Project, Canada (캐나다 아퀴스토어 CCS 프로젝트의 이산화탄소 모니터링을 위한 Baseline 탄성파 속성분석)

  • Cheong, Snons;Kim, Byoung-Yeop;Bae, Jaeyu
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.485-494
    • /
    • 2013
  • $CO_2$ Monitoring, Mitigation and Verification (MMV) is the essential part in the Carbon Capture and Storage (CCS) project in order to assure the storage permanence economically and environmentally. In large-scale CCS projects in the world, the seismic time-lapse survey is a key technology for monitoring the behavior of injected $CO_2$. In this study, we developed a basic process procedure for 3-D seismic baseline data from the Aquistore project, Estevan, Canada. Major target formations of Aquistore CCS project are the Winnipeg and the Deadwood sandstone formations located between 1,800 and 1,900 ms in traveltime. The analysis of trace energy and similarity attributes of seismic data followed by spectral decomposition are carried out for the characterization of $CO_2$ injection zone. High trace energies are concentrated in the northern part of the survey area at 1,800 ms and in the southern part at 1,850 ms in traveltime. The sandstone dominant regions are well recognized with high reflectivity by the trace energy analysis. Similarity attributes show two structural discontinuities trending the NW-SE direction at the target depth. Spectral decomposition of 5, 20 and 40 Hz frequency contents discriminated the successive E-W depositional events at the center of the research area. Additional noise rejection and stratigraphic interpretation on the baseline data followed by applying appropriate imaging technique will be helpful to investigate the differences between baseline data and multi-vintage monitor data.

Swelling and Mechanical Property Change of Shale and Sandstone in Supercritical CO2 (초임계 CO2에 의한 셰일 및 사암의 물성변화 및 스웰링에 관한 연구)

  • Choi, Chae-Soon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.266-275
    • /
    • 2012
  • In this study, a method is devised to implement a supercritical $CO_2$ ($scCO_2$) injection environment on a laboratory scale and to investigate the effects of $scCO_2$ on the properties of rock specimens. Specimens of shale and sandstone normally constituting the cap rock and reservoir rock, respectively, were kept in a laboratory reactor chamber with $scCO_2$ for two weeks. From this stage, a chemical reaction between rock surface and the $scCO_2$ was induced. The effect of saline water was also investigated by comparing three conditions ($scCO_2$-rock, $scCO_2-H_2O$-rock and $scCO_2$-brine(1M)-rock). Finally, we checked the changes in the properties before and after the reaction by destructive and nondestructive testing procedures. The swelling of shale was a main concern in this case. The experimental results suggested that $scCO_2$ has a greater effect on the swelling of the shale than pure water and brine. It was also observed that the largest swelling displacement of shale occurred after a reaction with the $H_2O-scCO_2$ solution. The results of a series of the destructive and nondestructive tests indicate that although each of the property changes of the rock differed depending on the reaction conditions, the $H_2O-scCO_2$ solution had the greatest effect. In this study, shale was highly sensitive to the reaction conditions. These results provide fundamental information pertaining to the stability of $CO_2$ storage sites due to physical and chemical reactions between the rocks in these sites and $scCO_2$.

Dinosaur Tracksite at Jeori, Geumseongmyeon, Euiseonggun, Gyeongsangbukdo, Korea(National Monument No. 373) - Occurrences, Significance in Natural History, and Preservation Plan - (경북 의성군 금성면 제오리 공룡발자국화석 산지(천연기념물 제373호) - 산상, 자연사적 가치 및 보존 방안 -)

  • Paik, In Sung;Kim, Hyun Joo;Kang, Hee Cheol;Lim, Jong-Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.268-289
    • /
    • 2013
  • The Dinosaur tracksite at Jeori, Geumseongmyeon, Euiseonggun, Gyeongsangbukdo, Korea (National Monument No. 373) has been studied in the aspects of location, stratigraphy, sedimentology, fossil occurrence, unique geological records, literature, significance in natural history, preservation, and management. On the basis of these features, the Jeori tracksite has been assessed semiquantitavely. The Jeori tracksite occurs in the Sagok Formation (Albian) of the Euiseong sub-basin, and over 300 footprints forming 12 sauropod trackways, 10 ornithopod trackways, and 1 theropod trackways are preserved in this tracksite. The track-bearing deposits consist of tabular-bedded medium- to fine-grained arkose with mudstone drape, interlaminated fine-grained sandstone to siltstone and mudstone, and shaly mudstone. The dinosaur tracks are preserved in the interlaminated fine-grained sandstone to siltstone and mudstone, and most of them are observed as underprints. The track-bearing deposits are interpreted as sheetflood deposits on the floodplain under a seasonal paleoclimatic condition with alternating of wetting and drying periods. Multiple tension fractures with NE strike were formed in the track-bearing bed, which resulted in that tracks seem to occur in several horizons. The significance in natural history of the tracksite can be summarized as follows: 1) the historical implication of the Jeori tracksite as the firstly designated National Monument of dinosaur fossil sites, 2) the high density of the occurrence of diverse footprints (over 300) within small area (about $1,600m^2$), and 3) the significance of the tension fractures associated with the track-bearing bed as geoeducational records for the understanding the development of fault. In order to share the value of the Jeori tracksite in the aspect of natural history with the community and public, the interpretive panel should be modified to include figures explaining paleoenvironment and tension fault development. In addition it is recommended that a brochure be published briefly explaining the tracksite and to educate the residents about the natural and social significance of the tracksite. For the safety of visitors it would be desirable for the road in front of the tracksite to be moved at least 10 m southward, which could mitigate the shaking of the track bed caused by traffic.