• Title/Summary/Keyword: Sandfilter

Search Result 4, Processing Time 0.023 seconds

Swine Wastewater Treatment Using Continuos Circulation Biofilm Process (연속순환 생물막 공정을 이용한 돈사 폐수 처리)

  • Goh, B.D.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.279-286
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.

Estimation of Terminal Sire Effect on Swine Growth and Meat Quality Traits (돼지 성장 및 육질 형질에 영향하는 종료웅돈의 효과)

  • Kim, H.S.;Kim, B.W.;Kim, H.Y.;Iim, H.T.;Yang, H.S.;Lee, J.I.;Joo, Y.K.;Do, C.H.;Joo, S.T.;Jeon, J.T.;Lee, J.G.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.

Conditioning and Characteristics of the Sea Water containing Heavy Oil (유독해수(油獨海水)의 조정(調整)과 성장(性狀)에 관한 연구(硏究))

  • Cho, Bong-Yeon;Hwang, Yong-Woo;Kim, Jong-Guk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.31-41
    • /
    • 1998
  • As the leakage of crude oil from tankers breaks out frequently, it caused a serious problem for ocean pollution and calls for developing treatments to handle the leaked crude oil and mitigate the pollution. Thus it is required to develop new purification technolgies and appropriate treatment systems which have sufficient treatment capability in order to cope with the anticipated ocean pollution. In this experiment, A and B type heavy oils were used to make the emulsion of both water containing heavy oil and sea-water containing heavy oil. The following are the main results from this study ; 1. When A and B type heavy oils were added to the original sea-water and treatedin the homogrenizer respectively, the particle of oil beacame smaller in both cases. Under the same condition, while the initial oil density of sea-water containing B-heavy oil is higher than of emulsion with A-heavy oil, the particle of A-heavy oil is finer than that of B-heavy oil. 2. When A and B type heavy oils were added to distilled water and treated in the homogenizer respectively, the particle was more dispersed and finer than that in the case of sea-water in both cases. In this result, the water containing oil formed more stable emulsion than the sea-water containing oil. 3. In this experiment, all emulsions showed oil in water types. 4. Since the oil particle is larger in the sea-water than in the distillated water, interms of elimination of oil, it is thought to be more important to give Membrane treatment after implementing sandfilter, activity carbon, coagulation-sedimentation and floating separation as pre-treatment.

  • PDF

A Study on Reuse of Reclaimed Water in Jeonbuk Province (전북지역 하수처리수 재이용 방안 연구)

  • Cho, Changwoo;Kim, Jintae;Park, Jeongjae;Song, Juhoon;Lee, Miseon;Jeong, Juri;Ryou, Jaewoong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.237-245
    • /
    • 2017
  • This study was aimed at investigating effluent water quality and proposing reuse possibilities for 12 sewage treatment plants discharged more than $5,000m^3/day$ in order to recycle the sewage treatment plant effluent of Jeollabuk-do effectively. Additionally, a laboratory scale test for reprocessing water discharge was performed. Categories of reclaimed sewage water reuse were divided into 7 topics and analyzed a total of 28 items including 16 heavy metals based on water quality standard. As a results, color, BOD, TN, chloride and Electrical Conductivity (EC) exceeded reused water quality standard. In particular, color and TN exceeded in 8 and 5 sewage treatment plants, respectively. The value of chloride and EC were high in sewage treatment plants including the food and industrial wastewater. At 4 sewage treatment plants were possible to reuse without re-treatment. The laboratory scale test was conducted to SandFilter (SF)-Granular Activated Carbon (GAC)-MicroFiltraion (MF)-Reverse Osmosis (RO). Both the removal efficiencies and economic feasibility of total E. coli., color and Suspended Solid (SS) suited in case using the SF-GAC treatment method. The removal of chloride and EC had little effect in the case of SF-GAC-MF system, but RO showed over 90% of removal efficiency. After using SF-GAC process only, the concentration of $UV_{254}$ decreased sharply from 0.3651 /cm to 0.0306 /cm and it showed over 92% of removal efficiency rate. In conclusion, for the effective reuse of sewage discharged water, water quality and the surrounding terrain of treatment plants should be all taken into account. If it needed for the reprocessing, both the selection for treatment and economic combination treatment methods will have to be considered.