• Title/Summary/Keyword: Sand-fine mixtures

Search Result 38, Processing Time 0.02 seconds

Shear Strength of Intermediate Soils with Different Types of Fines and Sands

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • In this paper, a series of monotonic undrained shear tests were carried out on four kinds of sand-fine mixtures with various fines content. Two kinds of sands (Silica sand V3, V6) and fines (Iwakuni natural clay, Tottori silt) were mixed together in various proportions, while paying attention to the void ratio expressed in terms of sand structure $(F_c{\leq}F_{cth})$. The undrained shear strength of mixtures below the threshold fines content was observed so that as the plastic fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. For non-plastic fines, the increase in the amount of fines leads to an increase in density of the soil, which results in an increase in strength. Then, the monotonic shear strength of the mixtures was estimated using the concept of granular void ratio. It was found that the shear strength of mixtures is greatly dependent on the skeleton structure of sand particles.

Undrained Shear Behavior of Sandy Soil Mixtures (사질혼합토의 비배수 전단거동 특성)

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.13-24
    • /
    • 2011
  • In the part of geotechnical engineering, soils are classified as either the coarse grained soil or the fine-grained soil following the fine content($F_c$=50%) according to the granularity, and appropriate design codes are used respectively to represent their mechanical behaviour. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay. In this study, several monotonic undrained shear tests were carried out on Silica sand fine mixtures with various proportions, and a wide range of soil structures, ranging from one with sand dominating the soil structure to one with fines controlling the behaviour, were prepared using compaction method or pre-consoldation methods in prescribed energy. The shear strength of mixtures below the threshold fines content is observed that as the fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. Then, by using the concept of fines content and granular void ratio, the monotonic shear strength of the mixtures was estimated. It was found that the shear behavior of mixtures is greatly dependent on the skeleton structure of sand particles.

Effect of Low-Plastic Fine Content on the Engineering Properties of Kaolinite-Sand Mixture (저소성 세립분 함량이 카올리나이트-모래 혼합토의 공학적 특성에 미치는 영향)

  • Kaothon, Panyabot;Lee, Su-Hyung;Choi, Yeong-Tae;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.7
    • /
    • pp.35-42
    • /
    • 2021
  • An experimental study was carried out on kaolinite-sand mixtures with various proportions of kaolinite content. To investigate physical behaviour of mixtures, index properties and compaction test results were analysed in various aspects. Moreover, to clearly see the interaction between kaolinite and sand particles, the observational analysis through microscopic image analysis device was conducted. The test results showed that an increase in the amount of kaolinite could create a strong bonding structure which resulted in higher specific surface available for activities of kaolinite particles. Also, an increase in the amount of the kaolinite resulted in an increase in the percentage of water sorption. Then it could accelerate the occupation rate of water which tended to take up the space that would have been occupied by solid particles, and accordingly, resulted in the decreased maximum dry unit weight and increased initial void ratio. Based on the microscopic image analysis, the samples were individually classified into three types of mixture such as sand dominant, intermediate fine content, and fine dominant. In addition, the fine and coarse grains seem to interact well in the mixtures with the fine content ranging from 25 to 40%.

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.

Evaluation of Cyclic Shear Strength Characteristics of Sands Containing Fines (모래-세립분 혼합토에 대한 반복전단강도특성 평가)

  • Kim, Uk-Gie;Kim, Dong-Wook;Lee, Joon-Yong;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.31-40
    • /
    • 2012
  • In most design codes, soils are classified as either sandy or clayey soils, and appropriate design equations for each soil type are used to estimate their soil behaviour. However, sand-fine mixtures, which are typically referred to as intermediate soils, are somewhere at the middle of sandy or clayey soils, and therefore a unified interpretation of soil behaviour is necessary. In this paper, a series of cyclic shear tests were carried out for three different combinations of sand-fine mixtures with various fines content. Silica-sand mixture and fines (Iwakuni natural clay, Tottori silt, kaolinite) were mixed together with various mass ratios, while paying attention to the changes of void ratios expressed in terms of sand structure. The cyclic shear strengths of the mixtures below the threshold fines content were examined with the increasing fines contents. As a result, as the fines contents increased, their cyclic deviator stress ratios decreased for dense samples while it increased for loose samples. Additionally, cyclic deviator stress ratio of the mixtures was estimated using the concept of equivalent granular void ratio.

Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand

  • Lade, Poul V.;Yamamuro, Jerry A.;Liggio, Carl D. Jr.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Many aspects of the behavior of sands are affected by the content of non-plastic fine particles and these various aspects should be included in a constitutive model for the soil behavior. The fines content affects maximum and minimum void ratios, compressibility, shear strength, and static liquefaction under undrained conditions. Twenty-eight undrained triaxial compression tests were performed on mixtures of sand and fine particles with fines contents of 0, 10, 20, 30, 50, 75, and 100% to study the effects of fines on void ratio, compressibility, and the occurrence of static liquefaction. The experiments were performed at low consolidation pressures at which liquefaction may occur in near-surface, natural deposits. The presence of fines creates a particle structure in the soil that is highly compressible, enhancing the potential for liquefaction, and the fines also alter the basic stress-strain and volume change behavior, which should be modeled to predict the occurrence of static liquefaction in the field. The void ratio at which liquefaction occurs for each sand/fines mixture was determined, and the variation of compressibility with void ratio was determined for each mixture. This allowed a relation to be determined between fines content, void ratio, compressibility, and the occurrence of static liquefaction. Such relations may vary from sand to sand, but the present results are believed to indicate the trend in such relations.

Effect of Fines Content on the Cyclic Shear Characteristics of Sand-clay Mixtures (점토혼합모래의 반복전단특성에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Hyodo, Masayuki;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • In this study, cyclic shear characterics of sand-clay mixtures were analyzed. In order to perform cyclic triaxial tests on sand clay mixtures, natural clays with activity and silica sand were mixed variously to reproduce soils with wide range of grain size compositions. Test specimens with various fines contents were prepared by the moisture compaction and pre-consolidation methods, while paying attention to the void ratio expressed in terms of the sand structure and clay structures, and undrained cyclic shear tests were performed. In the test results, cyclic shear strength decreased with increasing of sand granular void ratio below 20% of fine contents. When the granular void ratio of the test specimen exceeded the maximum void ratio of the silica sand, the clay matrix dominated the soil structure, and soil structures were not influenced by compaction energy. It was observed that, the matrix structure of the coarse particles has great effect on the undrained cyclic shear strength characteristics for sand-clay mixtures, and therefore, it is more appropriate to pay more attention to the density of the sand structure, rather than to the fines content.

Effect of Fine Content on the Monotonic Shear Behavior of Sand-Clay Mixtures (점토와 모래의 혼합토의 정적 전단거동에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Masayuki, Hyodo;Beak, Won-Jin;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.91-100
    • /
    • 2007
  • In most design codes, soils are classified as either sand or clay, and appropriate design equations are used to represent their behavior. For example, the behavior of sandy soils is expressed in terms of the relative density, whereas consistency limits are often used for clays. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay and therefore a unified interpretation of how the soil will behave at the transition point, i.e., from sandy behavior when fines are low to clay behavior for high fines content, is necessary. In this study, active natural clays are mixed with sand, and the fines content varied in order to produce different structures, ranging from one state where only sand particles form the soil structure to another where the matrix of fines make-up the structure. While paying attention to the granular void ratio in order to clarify the shear properties of sand-clay mixtures with increasing fines content monotonic, shear tests were performed on isotropically, and anisotropically consolidated specimens. From the test results, it was observed that the monotonic shear strength of sand-clay mixtures is dependent on the granular void ratio.

Effect of black sand as a partial replacement for fine aggregate on properties as a novel radiation shielding of high-performance heavyweight concrete

  • Ashraf M. Heniegal;Mohamed Amin;S.H. Nagib;Hassan Youssef;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.499-516
    • /
    • 2023
  • To defend against harmful gamma radiation, new types of materials for use in the construction of heavyweight concrete (HWC) are still needed to be developed. This research introduces new materials to be employed as a partial replacement for fine aggregate (FA) to manufacture high-performance heavyweight concrete (HPHWC). These materials include hematite, black sand, ilmenite, and magnetite, with substitution ratios of 50% and 100% of FA. In this research, the hardening and fresh characteristics of HPHWC were obtained. Concrete samples' Gamma-ray linear attenuation coefficient was evaluated utilizing a gamma source of Co-60 through the thicknesses of 2.5, 5, 7.5, 10, 12.5, and 15 cm. High temperatures were studied for HPHWC samples, which were exposed to up to 700℃ for two hours. Energy-dispersive x-rays and a scanning electron microscope carried out microstructure analyses. Magnetite as an FA attained the lowest compressive strength of 87.1 MPa, but the best radiation protection characteristics and the highest density of 3100 kg/m3 were achieved. After 28 days, the attenuation efficiency of concrete mixtures was increased by 6.5% when fine sand was replaced with black sand at a ratio of 50%. HPHWC, which contains hematite, black sand, ilmenite, and magnetite, is designed to reduce environmental and health dangers and be used in medicinal, military, and civil applications.

Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates (석탄 가스화 용융 슬래그를 혼합잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Han, Min-Cheol;Kim, Jong;Choi, Il-Kyeung;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.