• Title/Summary/Keyword: Sand percentage

Search Result 136, Processing Time 0.028 seconds

A study on the S/W application for a riser design process for fabricating axisymmetric large offshore structures by using a sand casting process

  • Seo, Hyung-Yoon;Seo, Pan-Ki;Kang, Chung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.462-473
    • /
    • 2019
  • The effects of the location and dimension of the gate, location, and volume of the feeder, application of a chill, chill volume, and heating method of the feeder with respect to the effect of the mold-designing technologies on the defect status of the products are described. It is possible to increase the solidification time of the feeder by heating feeder. Furthermore, the pressure generated from the feeder is imposed on a product, and this decreases the generation of shrinkage porosities. In this study, two types of gating and feeding systems had been proposed: the bottom L-type junctions and the top L-type junctions. Additionally, solidification behaviors, such as solidification time, shrinkage porosities, weight percentage of chill system to product, hot spot, and solidification time ratio (=Solidification time of feeder/solidification time of product), are extensively analyzed by using commercial casting simulation software. Based on the solidification behaviors, reasonable mold design, feeding system, critical feeder heating temperature, and solidification time ratios are proposed in the sand casting process for the fabrication of carrier housing in order to reduce the casting defects and to increase the recovery rate.

Assessing pollutants' migration through saturated soil column

  • Smita Bhushan Patil;Hemant Sharad Chore;Vishwas Abhimanyu Sawant
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.95-106
    • /
    • 2023
  • In the developing country like India, groundwater is the main sources for household, irrigation and industrial use. Its contamination poses hydro-geological and environmental concern. The hazardous waste sites such as landfills can lead to contamination of ground water. The contaminants existing at such sites can eventually find ingress down through the soil and into the groundwater in case of leakage. It is necessary to understand the process of migration of pollutants through sub-surface porous medium for avoiding health risks. On this backdrop, the present paper investigates the behavior of pollutants' migration through porous media. The laboratory experiments were carried out on a soil-column model that represents porous media. Two different types of soils (standard sand and red soil) were considered as the media. Further, two different solutes, i.e., non-reactive and reactive, were used. The experimental results are simulated through numerical modeling. The percentage variation in the experimental and numerical results is found to be in the range of 0.75- 11.23 % and 0.84 - 1.26% in case of standard sand and red soil, respectively. While a close agreement is observed in most of the breakthrough curves obtained experimentally and numerically, good agreement is seen in either result in one case.

Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers (충전재에 의한 지오폴리머의 고온수축 감소효과)

  • Cho, Young-Hoon;An, Eung-Mo;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Geopolymers produced from aluminosilicate materials such as metakaolin and coal ash react with alkali activators and show higher fire resistance than portland cement, due to amorphous inorganic polymer. The percentage of thermal shrinkage of geopolymers ranges from less than 0.5 % to about 3 % until $600^{\circ}C$, and reaches about 5 ~ 7 % before melting. In this study, geopolymers paste having Si/Al = 1.5 and being mixed with carbon nanofibers, silicon carbide, pyrex glass, and vermiculite, and ISO sand were studied in order to understand the compressive strength and the effects of thermal shrinkage of geopolymers. The compressive strength of geopolymers mixed by carbon nanofibers, silicon carbide, pyrex glass, or vermiculite was similar in the range from 35 to 40 MPa. The average compressive strength of a geopolymers mixed with 30 wt.% of ISO sand was lowest of 28 MPa. Thermal shrinkage of geopolymers mixed with ISO sand decreased to about 25 % of paste. This is because the aggregate particles expanded on firing and to compensate the shrinkage of paste. The densification of the geopolymer matrix and the increase of porosity by sintering at $900^{\circ}C$ were observed regardless of fillers.

Utilisation of glass powder in high strength copper slag concrete

  • Zaidi, Kaleem A.;Ram, Shobha;Gautam, Mukesh K.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 2017
  • This study was focused on the use of partial replacement of cement with glass powder in high strength concrete and also copper slag as a partial replacement of coarse sand in concrete. The high strength concrete was prepared with different mineral admixtures like silica fume, fly ash and rice ash husk in different proportions. An experimental investigation has been carried to study about the effect of glass powder on high strength copper slag concrete. The range of glass powder was 10%, 15% and 20% as a replacement of cement. The range of copper slag was 0%, 20%, 40% and 60% as a replacement of natural sand. In addition to the different percentage of fly ash, silica fume, and rice husk ash 5% and 10% was also studied in copper slag concrete. Thus, a total of 51 cubes were casted and compressive strength test was performed on them. The result of the study shows that the value of average compressive strength of concrete after addition of 10%, 15% and 20% of glass powder are 70.47, 72.01 and 73.31 respectively. The value of average compressive strength after addition of 20%, 40% and 60% copper slag as a replacement of sand are 72.18, 74.38 and 73.08 respectively. The value of average compressive strength after addition of 5% and 10% fly ash as a replacement of cement are 71.56 and 73.22. The value of average compressive strength after addition of 5% and 10% silica fume as a replacement of cement are 72.33 and 73.53. The value of average compressive strength after addition of 5% and 10% rice husk ash as a replacement of cement are 72.86 and 69.49. At the level of 20% replacement of cement by glass powder meets maximum strength as compared to that of controlled concrete and copper slag high strength concrete.

Physicochemical Properties of Root Zone Soil Based on Sand Blending with Coconut Coir and Peat Moss (코코넛 코이어와 피트모스 혼합 모래 토양의 물리·화학적 특성)

  • Kim, Young-Sun;Bae, Eun-Ji;Choi, Mun-Jin;Kim, Tae-Wooung;Lee, Geung-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • BACKGROUND: Soil amendment was necessary applied for the sand that had been used to root zone of green ground in golf course because of its low water retention power and cation exchangeable capacity. This study was conducted to evaluate the effect of the mixed ratio of peat moss and coconut coir as soil amendment materials on the soil physicochemical properties applied to rootzone based on sand. METHODS AND RESULTS: The soil amendments were blended at 0, 3, 5, 7 and 10% by soil volume. The pH in the peat moss treatment was lower than that of control (0% soil amendment), and pH and electrical conductivity (EC) in the coconut coir were higher. The blending ratio of peat moss was negatively correlated with pH of rootzone soil (p<0.01), and that of coconut coir positively with EC (p<0.01). As compared with control, capillary porosity, the physical factors such as air-filled porosity, total porosity, and hydraulic conductivity of rootzone soil were increased by applying peat moss and coconut coir. For correlation coefficients between percentage of soil amendments and soil physical factors, peat moss and coconut coir were positively correlated with porosity and hydraulic conductivity (p<0.01). CONCLUSION(S): These results indicated that the application of peat moss and coconut coir affected on the change of physicochemical properties of rootzone soil, and improved soil porosity and hydraulic conductivity.

Effect of $GA_3$, Kinetin and Physical Treatment on the Seed Germination of Zanthoxylum piperitum A.P. DC. ($GA_3$, Kinetin 및 물리적 처리가 초피나무 종자의 발아에 미치는 영향)

  • Kim, Se-Jong;Shin, Jong-Hee;Kim, Ki-Jae;Park, So-Deug;Choi, Boo-Sull;Kim, Kil-Ung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 1997
  • This study was conducted to improve germination ratio of Zanthoxylum piperitum A.P. DC. seeds. Stratification for 60 days after scarification of seed with sand was germination percentage to 5.4% and $GA_3$, 50ppm for 24 hrs after scarification of seed with sand showed 8.9%. Soaking the seeds in $GA_3$, 50ppm for 24 hrs after 40 to $70^{\circ}C$ hot water treatment for 10 minutes showed low germination of 4.4%. Based on $H_2SO_4$, NaOH and $HNO_3$, treatments, germination percentage did not improve at all regardless of soaking time. The highest germination of 91.1% was observed when seed was soaked in $GA_3$ 100ppm for 48 hrs after stratification for 60 days at $4^{\circ}C$. Kinetin treatment at 50ppm for 24 hrs had the greatest germination percentage of 31.7% but it did not improve germination ratio compared to $GA_3$ treatment.

  • PDF

Assessment of Allelopathic Potential of Some Weed Species on Alfalfa(Medicago sativa L.) Germination and Early Seedling Growth (알팔파 발아와 초기생육에 대한 잡초종의 Allelopathic 잠재성 평가)

  • Chung, I.M.;Miller, D.A.
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.121-130
    • /
    • 1995
  • Greenhouse and laboratory studies were conducted to investigate allelopathic potential of some weed species on alfalfa(Medicago sativa L.) germination and seedling growth. In the comparison between top(leaves+stems) and root extracts, top extract exhibited greater allelopathic effects on alfalfa germination than that of root. The various weed species extract differently responded to alfalfa test species, WL-320, in terms of allelopathic effect. Top and root aqueous extracts of lambsquarter(Chenopodium album L.), giant foxtail(Setaria faberii Herrm.), redroot pigweed (Amaranthus retroflexus L.), velvetleaf(Abutilon theophrasti Medic.), crabgrass(Digitaria sanguinalis L.), canada thistle(Cirsium arvense L.) and prostrate knotweed(Polygonium aviculare L.) significantly inhibited germination, seedling length, weight, vigor, and rate of germination of alfalfa. The regression slopes of various top extracts showed that velvetleaf(b=3.69) extracts were the most inhibitory, while large crabgrass(b=2.39) extracts had the least allelopathic effect on alfalfa germination. Germination, seedling length and weight of alfalfa were inversely proportional to the concentration of dried velvetleaf extracts. Also, more of the toxic effects were observed from the dried extracts compared to the fresh extracts. Residue of velvetleaf inhibited significantly alfalfa emergence and survival percentage compared to the control. The emergence and survival percentage of alfalfa were 44%, 57% at 1.0% residue treatment, respectively. When weed residues were mixed with silica sand with incubation time, velvetleaf residue most inhibited alfalfa growth. The degree of inhibition increased as incubation time increased. An incubation for 72h caused the greatest inhibition of alfalfa growth. These results demonstrate the different allelopathic activity of weed species extracts on alfalfa and suggest that weed may affect alfalfa growth and development through the inhibitory effects of allelochemicals present in weed tissue.

  • PDF

An Experimental Study on the Drying Shrinkage of Concrete Using High-Quality Recycled Sand (고품질 순환잔골재를 사용한 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Song, Ha-Young;Lee, Sang-Soo;Lee, Do-Heun;Lee, Jong-Gou;Kim, Jae-Hwan;Lim, Hyon-Ung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.136-143
    • /
    • 2006
  • In this study, recently it is urgently required that demolition waste concrete has to be recycled on the construction because urban development is accelerated and redevelopment project is rapidly expanded, production quantity of construction and demolition waste concrete is being increased. As a results of drying shrinkage test under restrained and unrestrained condition, although workability and mechanical properites of concrete using HQRS were similar to that of concrete using natural sand, there were a great difference in deformation characteristic of dry shrinkage according to replacement ratio of HQRS. And, it makes sure that use of HQRS instead of partial nature sand was effective because drying shrinkage of concrete using 30 volume percentage of HQRS was smaller than that using only natural sand. Therefore, it is the objective of this study to provide the fundamental data about the re-application as an analysis of the drying shrinkage characteristics of concrete using HQRS and it is able to creta a high value-added by using HQRS.

  • PDF

Guided wave analysis of air-coupled impact-echo in concrete slab investigation on the use of waste tyre crumb rubber in concrete paving blocks

  • Murugan, R. Bharathi;Natarajan, C.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.311-318
    • /
    • 2017
  • This paper investigates the utilization of waste tyre crumb rubber as the fine aggregate in precast concrete Paving block (PCPB). PCPB's are generally preferred for city roads, pedestrian crosswalk, parking lots and bus terminals. The main aim of this paper is to evaluate the mechanical properties of wet cast PCPB containing waste tyre crumb rubber. The mechanical properties were investigated using a density, compressive strength, split tensile strength and flexural strength tests at 7, 28 56 days according to the IS 15688:2006 and EN1338. The wet cast method was followed for producing PCPB samples. The fine aggregate (river sand) was replaced with waste tyre crumb in percentage of 5%, 10%, 15%, 20% and 25% by volume. All the test results were compared with the conventional PCPB (Without rubber). The test results indicate its feasibility for incorporating waste tyre crumb rubber in the production of PCPB by the wet cast method.

Influence of the Mixing Factor on the Properties of Concrete Used Artificial Lightweight Aggregates (인공경량골재를 사용한 콘크리트의 물성에 미치는 배합요인의 영향)

  • Shin, Jae-Kyung;Choi, Jin-Man;Jeong, Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.73-77
    • /
    • 2008
  • Structural lightweight concrete will reduced total loads of supporting sections and foundations in archtectural and civil structures. So, the lightweight concrete can be used widely for various purpose in the archtectural and civil structures. This paper were examined the influence of the mixing factor on the fresh and hardened properties of lightweight concrete that are used 2types of the differences properties of lightweight aggregates. According to types of lightweight aggregates, the case of synthetic lightweight aggregate are have need higher s/a; 2~4% on mixing proportion. Lightweight concrete was somewhat exhibit lower compressive strength than ordinary concrete. However it was not showed a marked difference. According to types of lightweight aggregates, the case of synthetic the lightweight aggregate are highest performance in fresh and hardened concrete.

  • PDF