• Title/Summary/Keyword: Sand iron

Search Result 155, Processing Time 0.026 seconds

복합오염물질제거를 위한 현장반응층 이용에 관한 연구

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.168-171
    • /
    • 2003
  • This research was conducted to assess the performance of the mixed reactive materials with sand, iron filings, and HDTMA-bentonite for trichloroethylene (TCE) and chromate removal under controlled groundwater flow conditions. TCE and chromate removal rates with the mixtures of iron filing/HDTMA-bentonite were highest among four columns due to reduction by iron filings and sorption by HDTMA-bentonite. The greater capacity of the mixed iron filing/HDTMA-bentonite compared HDTMA-bentonite was due to an enhanced chromate reduction in addition to chromate sorption. The presence of chromate caused greater inhibition of TCE removal in the column with iron filings, while the presence of TCE caused less inhibition of TCE. Also, nitrate caused the decrease in TCE removal relative to chloride. Nitrate ions may also significantly affect TCE reduction rates by competing for electrons with the chlorinated compounds. The anion and co-existed contaminants competing effects should be considered when designed permeable reactive barriers (PRBs) composed of zero valent iron for field applications to remediate TCE and chromate.

  • PDF

Iron Oxide Coated Sand(ICS)의 중금속 흡착제거 특성

  • 최형진;양재규;장윤영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.379-381
    • /
    • 2003
  • Metal sorption onto the ICS (Iron oxide coated sand) was studied in batch experiments. Heavy metal cations such as Cd, Pb, and Cu, and a metal anion, As, which sporadically exist in mine sites, were tested for the sorptive removal by ICS. In low pH conditions As showed the highest removal efficiency compared to the other metal cations. And the sorption removal of As was apparently pH-independent reaction. However, removal of metal cations increased with pH and above pH 7 most metal cations showed very low soluble concentrations after treatment. Such a high removal ratio of metal cations above the neutral pH appeared predominantly due to precipitation.

  • PDF

Casting of Ductile Cast Iron using Metal Mold and Improvement of Impact Toughness by Direct Tempering (금형주조법에 의한 구상흑연주철의 제조 및 직접 템퍼링에 의한 충격인성 향상)

  • Choi, Sung Bae;Lee, Won Sik;Hong, Young Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.159-164
    • /
    • 1997
  • Non-alloyed and 1.0%Ni alloyed ductile cast iron were cast into the sand mold and metal mold, and finer graphite size was obtained in case of metal mold casting. Direct tempering after casting showed the slight increase of absorbed energy, which is largely due to the relieving of residual stress that is developed during casting. After austempering heat treatment, higher impact energy was obtained in case of metal mold casting than sand mold casting, which is due to the finer graphite size.

  • PDF

A Study on Characteristics of Strength and Fracture of Austempered Graphite Cast Iron (오스템퍼 회주철의 파괴강도 특성에 관한 연구)

  • 이하성;강동명;이영상
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 1996
  • The mechanical properties and fatigue crack growth rate fracture toughness of permanent mould cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. Specimens prepared for tensile, impact and fatigue test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$, $320^{\circ}C$, $370^{\circ}C$ and $420^{\circ}C$ for 1 hour. The strength, impact and fatigue crack propagation behavior of permanent mold cast AGI were found to be superior to those of sand cast AGI. Maximum values in tensile strength, BHN, Charpy impact energy, were obtained at the austempering temperature of $270^{\circ}C$. Samely, the slowest fatigue crack growth rate was appeared at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mould casting.

  • PDF

Removal Efficiency of Arsenic by Adsorbents having Different Type of Metal Oxides

  • Min, Sang-Yoon;Kim, Byeong-Kwon;Park, Sun-Ju;Chang, Yoon-Young;Yang, Jae-Kyu
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • In this study, oxidation of As (III) as well as removal of total arsenic by adsorbents coated with single oxides or multi-oxides (Fe (III), Mn (IV), Al (III)) was investigated. In addition, multi-functional properties of adsorbents coated with multi-oxides were evaluated. Finally, application of activated carbon impregnated with Fe or Mn-oxides on the treatment of As (III) or As (V) was studied. As (V) adsorption results with adsorbents containing Fe and Al shows that adsorbents containing Fe show a greater removal of As (V) at pH 4 than at pH 7. In contrast adsorbents containing Al shows a favorable removal of As (V) at pH 7 than at pH 4. In case of iron sand, it has a negligible adsorption capacity for As (V) although it contains 217.9 g-Fe/kg-adsorbent, Oxidation result shows that manganese coated sand (MCS) has the greatest As (III) oxidation capacity among all metal oxides at pH 4. Oxidation efficiency of As (III) by IMCS (iron and manganese coated sand) was less than that by MCS. However the total removed amount of arsenic by IMCS was greater than that by MCS.

Using Waste Foundry Sands as Reactive Media in Permeable Reactive Barriers

  • 이태윤;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.62-65
    • /
    • 2002
  • Permeable reactive barriers (PRBs) are in-situ barriers constructed in a subsurface to treat contaminated groundwater using various reactive media. The common reactive medium used in PRB is zero-valent iron, which has been widely used to treat chlorinated solvents (i.e., PCE, TCE). A disadvantage of iron media is high cost. In this study, waste foundry sands were tested to determine the feasibility of their use as a low cost reactive medium. Batch and column tests were conducted with TCE to determine transport parameters and reactivity of the foundry sands. The reactivities of foundry sands for common groundwater contaminants are comparable to or slightly higher than those for Peerless iron, a common medium used in PRBs. In addition, the TOC and clay in foundry sands can significantly retard the movement of target contaminant, which may result in lower effluent concentration of contaminant due to biodegradation. In general, PRBs 1-m thick can be constructed with many foundry sands to treat TCE provided the zero-valent iron content in the foundry sand is higher than 1%.

  • PDF

Removal of As(III) by Pilot-Scale Filtration System Separately Packed with Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사를 분리 충진시킨 파일럿 여과시스템에 의한 3가 비소 제거)

  • Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.878-883
    • /
    • 2006
  • Removal efficiency of As(III) was investigated with a pilot-scale filtration system packed with an equal amount(each 21.5 kg) of manganese-coated sand(MCS) in the bottom and iron-coated sand(ICS) in the top. Height and diameter of the used column was 200 cm and 15 cm, respectively. The As(III) solution was introduced into the bottom of the filtration system with a peristaltic pump at a speed of $5{\times}10^{-3}$ cm/s over 148 days. Breakthrough of total arsenic in the mid-sampling position(end of the MCS bed) and final-sampling position(end of the ICS bed) was started after 18 and 44 days, respectively, and then showed a complete breakthrough after 148 days. Although the breakthrough of total arsenic in the mid-sampling position was started after 18 days, the concentration of As(III) in this effluent was below 50 ppb up to 61 days. This result indicates that MCS has a sufficient oxidizing capacity to As(III) and can oxidize 92 mg of As(III) with 1 kg of MCS up to 61 days. When a complete breakthrough of total arsenic occurred, the removed total arsenic by MCS was calculated as 79.0 mg with 1 kg MCS. As variation of head loss is small at each sampling position over the entire reaction time, it was possible to operate the filtration system with ICS and MCS for a long time without a significant head loss.

Development and Field Installation of a System of Simultaneously Removing Dust and Volatile Organic Compounds from Furan Process in Foundry (주물공장의 Furan 공정에서 발생하는 휘발성 유기 화합물 및 분진의 동시제거 시스템 개발 및 현장설치 연구)

  • Park, Jin Soo;Jung, Jae Hak;Lee, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.136-148
    • /
    • 2006
  • A foundry makes various machinery parts made by iron. For manufacturing machinery parts, they usually uses wooden mold with molding sand and pour the molten iron into wooden mold through inlet. A foundry have many processes including Furan process, In Furan process workers prepares a wooden mold in the molding sand. So they fixes wooden mold in sand housing and then they fill the molding sand in the sand housing. Molding sand should be sticky enough to sustain the shape of wooden mold, so several materials are needed to prepare the suitable molding sand. The first step of Furan process is making the molding sand with molding sand and Voltaic Organic Compounds (VOC) and the second step of Furan process is pour the molding sand into the wooden molding housing. This two step of process generated noxious VOC and various size of dust. So the process is very dirty and dangerous one. Because of these, Workers frequently shrink out of the plant. The company related with foundry usually faced on the difficult situation for engagement and always have shortage of hiring problem. Through this study, we developed a system which removes toxic VOC and dust simultaneously. We design and construct real system and install it at real plant. Before setting up this system, the working surroundings VOC (for formaldehyde) 15 ppm and Dust(for $PM_{10}$) $8,000{\mu}g/m^3$. After setting up this system, working surroundings is improved by VOC (for formaldehyde) 0 ppm, Dust(for $PM_{10}$) $4{\mu}g/m^3$, and the work evasion factor is removed. So we contribute to solve hiring problem of this company and increasing the productivity also.