• Title/Summary/Keyword: Sand ground

Search Result 851, Processing Time 0.028 seconds

A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems (지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구)

  • Baek, Sung-Kwon;Jeon, Joong-Kyu;An, Hyung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

Utilization of Recycled Aggregates and Crushed Stone as Horizontal Drains in Soft Ground (수평 배수재로서 순환골재와 쇄석의 활용 방안)

  • Lee, Dal-Won;Lim, Jin-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.111-123
    • /
    • 2010
  • In this study, laboratory model test on utilization of recycled aggregates and crushed stone as horizontal drains to use alternative material of sand in soft ground is practiced. The coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~5.1 times and 2.0~3.3 times greater than sand, respectively. The horizontal coefficient of permeability in case of installing the horizontal perforated drain pipe showed largely 1.9~6.8 times more than the case of not installing. The drainage distance showed 1.7~1.8 times greater than sand. When a degree of consolidation is 90 %, there is no delay of consolidation in SCP and PVD improvement sections. Therefore, it is proven that the field applicability is excellent. Also, the suitable quality management criterion is presented to make use of a horizontal drains in soft ground on the basis of analysis of the physical and environmental characteristics.

Characteristics of Bearing Capacity and Stress Concentration of Clay Ground Improved with Sand Compaction Piles (SCP 보강 점성토 지반의 지지력 및 응력분담특성)

  • Yoo Nam-Jae;Park Byung-Soo;Jeong Gil-Soo;Koh Kyung-Hwan;Kim Ji-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.81-91
    • /
    • 2005
  • This paper is the results of experimental and numerical works on the investigating design factors influencing the bearing capacity, the ratio of stress concentration, and the failure mechanism of the clay ground improved with sand compaction piles (SCP). In order to find the behavior of the clay ground improved with SCP, extensive centrifuge model experiments were carried out for each of the SCP replacement ratio of 20, 40, and $70\%$, the non-plastic fine contents in sand of 5, 10, and $15\%$, and the ratio of the improved width to the loaded area (W/B) of 1, 2, and 3. The commertially available software of FEM, CRISP, was used to analyze test results by performing numerical estimations. In these numerical analyses the sand compaction piles and the clay ground were simulated as a linear elastic and plastic constitutive model and the modified Cam-clay model, based on Critical State Soil Mechanics, respectively.

Thermal Conductivity Measurement of Sand-Water Mixtures Used for Backfilling Materials of Vertical Boreholes or Horizontal Trenches (지중열교환기 수직 보어홀 및 수평 트렌치 뒤채움재로서 모래-물 혼합물의 열전도도 측정)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of sand (silica, quartzite, limestone and masonry sand)-water mixtures used in ground heat exchanger backfilling materials. Nearly 150 tests were performed in a thermal conductivity measuring system (TPSYS02) to characterize the relationships between the thermal conductivity of mixtures and the water content. The results show that the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The results also show that for constant water contents and a dry density value, the thermal conductivity of mixtures increases with increasing thermal conductivity of solid particles. The measurement results were also compared with the most widely used empirical prediction models for the thermal conductivity of soils.

Planting foundations and Turfgrass Species Adapted to Grounds (스포츠 그라운드에 적합한 식재지반과 잔디 초종에 관한 연구)

  • 심상렬;정대영;김경남
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • The purpose of this study is to identify the proper species of turf and the ground structure for the turf sports grounds. Analysis items are particle distribution of sand and gravel, saturated hydraulic conductivity, soil hardness, and turf growth. Results of this study are as follows. 1)The particle distribution of sand used in the multi-layer rootzone is within the upper limit of the standard level. The diameter of mid-size grain({TEX}$D_{50}${/TEX})was 0.62mm and the value of uniformity ({TEX}$D_{90}${/TEX}/{TEX}$D_{10}${/TEX}) was 3.93. The particle size distribution of sand used in the single-layer rootzone was beyond the standard level as {TEX}$D_{50}${/TEX})=0.86 and {TEX}$D_{90}${/TEX}/{TEX}$D_{10}${/TEX}=8.86. 2) Saturated hydraulic conductivity of the sand was higher in the multi-layer rootzone than in the single-layer rootzone while bulk density was vice versa. 3) Surface hardness was high on Kentucky bluegrass+perennial ryegrass compared to zoysiagrass probably caused by root density. 4) Visual covering and visual rating were highly evaluated on zoysiagrass within summer while better evaluated on Kentucky bluegrass+perennial ryegrass throughout fall to spring. 5) Visual color was better evaluated on Kentucky bluegrass+perennial ryegrass than on zoysiagrass throughout the year. These studies are demanded urgently according to increase in interest in the ground and turf species of the turf sports ground because of World Cup 2002.

  • PDF

Study on physical characteristics of Graphite-added bentonite grout for backfilling closed-loop groud heat exchanger (수직 밀폐형 지중 열교환기용 뒤채움재로서 흑연(Graphite)을 첨가한 벤토나이트 그라우트재의 물리적 특성연구)

  • Lee, Kang-Ja;Gil, Hu-Jeong;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Pum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.179-187
    • /
    • 2009
  • Bentonite-based grouting has been popularly used to seal a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. The bentonite-based grout, however, has relatively lower thermal conductivity than that of ground formation. Accordingly, it is common to add some additives such as silica sand to the bentonite-based grout for enhancing thermal performance. In this study, graphite is adapted to substitute silica sand as an addictive because graphite has very high thermal conductivity. The effect of graphite on the thermal conductivity of bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, comparisons of viscosity between applications of graphite and silica sand as additives has been carried out. In conclusion, using graphite has thermal conductivity about three times higher than that of silica sand.

  • PDF

A Study on the Bearing Capacity characteristics of Stone column by Numerical Analysis (수치해석에 의한 쇄석말뚝의 지지력 특성 고찰)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.90-99
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which enhances ground conditions through ground water draining, settlement reducing and bearing capacity increasing complexly by using crushed stone instead of sand in general vertical drain methods. In recent, general construction material, sand is in short of supply, because of the unbalance of demand and supply. Also, the bearing capacity improving effect of stone column method is needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improving ground behavior reciprocally is not yet prepared. To contribute this situation, bearing capacity behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, bearing capacity behavior prediction formula was suggested. This formula was verified by comparing the prediction result with in situ test.

  • PDF

Effects of Several Soil Composites and Fertilizers to Plant Growing on the Artificial Planting Ground (인공식재지반의 토양배합 및 비료종류에 따른 초본식물의 생육효과)

  • Lee, Eun-Yeob;Moon, Seok-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • To find pertinent soil type and maintenance method for artificial planting ground, the effects of soil compositions{sandy loam(S), vermiculite(V), sandy loam+vermiculite+sand(SVS), sandy loam+ carbonized rice husk+sand(SCS), sandy loam+humus sawdust+sand(SHS)}, and fertilizers (organic, chemical) on plant(kentuckyblue grass) growth were measured and compared from the field experiment. The results are summarized as follows 1. the highest germination rate is found from "vermiculite(V)" and the lowest from "sandy loam(S)" among tested 5 soil compositions. 2. "sandy loam+vermiculite+sand(SVS)" composition shows the highest plant height growth effect (5cm growth during tested 3 months) comparing to other 4 compositions. 3. "sandy loam+vermiculite+sand(SYS)" composition shows the highest ground covering rate after first two months, but it concede its order to "sandy loam+humus sawdust+sand(SHS)" composition after next one month growing. 4. the effects of fertilizers are follows 1) Among the blocks where no fertilizer was tried, the predominant height growth was obvious in "sandy loam+carbonized rice husk+sand(SCS)" and "sandy loam+humus sawdust+sand(SHS)" composition. 2) Among the blocks where chemical fertilizer was tried, relatively positive results were found from "vermiculite(V)" and "sandy loam+vermiculite+sand(SYS)" blocks on germination and growth rate. But on the ground coverage ratio, the effect of "sandy loam+carbonized rice husk+sand(SCS)" composite precede that of those 2 composites. 3) Among the blocks where organic fertilizer was tried, "sandy loam+humus sawdust+sand(SHS)" and "vermiculite(V)" blocks show relatively high ground coverage rate, growth rate than others. 4) When compositional differences were not considered, the block where organic fertilizer was tried shows most positive effects on all 3 measurements-germination ratio, height growth and ground covering.

  • PDF

Evaluation of Influencing Factors on Settlement Behavior of Very Soft Ground with Reinforced Surface (표층처리공법으로 개량된 초연약지반의 침하거동에 미치는 영향인자 분석)

  • You, Seung-Kyong;Lee, Jong-Sun;Ham, Tae-Gew;Yang, Kee-Suk;Cho, Sam-Deok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.85-92
    • /
    • 2008
  • It is necessary to develop a rational design method for surface reinforcement of very soft ground because most current design works rely on merely crude empirical correlations. In this paper, the mechanical behavior of very soft ground that is surficially reinforced was investigated with the aid of a series of numerical analyses. Several material properties of each dredged soft ground, reinforcement and backfill sand mat have been exercised in the numerical analysis. The result of numerical analysis was compared with those of the laboratory model test. Through the matching process between the numerical and experimental result, it is possible to determine representative material properties of the dredged soft ground, reinforcements and backfill sand mat. These verified material properties permit to evaluate the effect of the stiffness of reinforcement and the thickness of sand mat on the overall deformation of the reinforced soft ground.

A Study on a Compression Index for Settlement Analysis of SCP Treated Ground Using Back Analysis (역해석을 이용한 모래다짐말뚝(SCP)으로 개량된 연약점토지반의 압축지수 결정에 관한 연구)

  • Hwang, Sungpil;Im, Jongchul;Kwon, Jeonggeun;Kang, Yeounike;Joo, Ingon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.5-14
    • /
    • 2010
  • The paper processed settlement analysis using Finite Elements Method(FEM). Because Stress Distribution Ratio has to be decreased, for settlement analysis of soft clay deposit improved by sand compaction piles(SCP). Back analysis was processed comparing the measured settlements of laboratory model tests and finite element analysis where the SCP treated area was assumed as mixed ground with clay deposit rather than being a composite ground. The paper proposes a methodology which employs a compression index($C_c$) for settlement analysis of soft clay deposit improved by sand compaction piles from the back analysis. This approach is applied to a field measurement case(A revetment founded on the SCP improved clay deposit with the replacement ratio of 45%).