• Title/Summary/Keyword: Sand filtration

Search Result 173, Processing Time 0.029 seconds

Quality Characteristics of baechu Kimchi Salted with Recycled Wastebrine (재활용 절임수로 제조한 배추 김치의 특성)

  • 윤혜현;이숙영
    • Korean journal of food and cookery science
    • /
    • v.19 no.5
    • /
    • pp.609-615
    • /
    • 2003
  • In the Kimchi manufacturing industry, the process of brining baechu produces a vast amount of high salinity waste water. To study if this brine can be recycled, the quality characteristics of Kimchi salted by waste brine(F), which was used five times successively, was compared with those salted using water after recycling filtration through sand (F1) and activated carbon (F2) columns. No significant difference in the salinity and soluble solid contents, during fermentation at 10 was observed among the samples, but the salinity and soluble solid contents of the F-sample were slightly higher than in the control. The F1 and control Kimchi showed similar pHs and titratable acidities, while the F-Kimchi had a lower pH and a higher acidity during fermentation. The numbers of total viable cells were highest in the F, and lowest in the F2-Kimchi, while the counts of lactic acid bacteria were lowest in the F-Kimchi. The sensory tests for appearance, odor, taste and overall acceptance showed that the F-Kimchi was the least desirable, the F2-Kimchi had lower sour odor and taste, and a higher toughness, than the others. The F1- and control Kimchi had similar sensory grades for appearance, odor, and tastes, and there were no significant difference in the overall acceptance, showing the possibility of recycling wastewaters as brine for the production of baechu Kimchi.

Study on Permeability, Optimum Yield and Long-term Stability in Alluvial Well with Filter Layer Change (충적우물에서 필터층 변화에 따른 투수특성, 적정양수량 및 장기적 안정성에 대한 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Choi, Yong-Soo;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.101-115
    • /
    • 2018
  • This study was carried out to evaluate the effects of various filter conditions on unconfined aquifer (alluvial aquifer). We made model test device which has filter layer, pumping well and observation well which consist of sand layer and gravel layer to test. Step drawdown test and long term pumping tests were carried out using the device. The permeability characteristics of each test group were confirmed and the optimal yield was calculated. As a result of comparing the optimal yield of double filter and single filter in sand, dual-filter SD-300 was valued at 216.8 % higher final optimal yield than single-filter SS-300. Comparing the dual filter SD-300 and the single filter SS-100 with a thin filter layer, dual-filter SD-300 was valued at 709.2% higher final optimal yield than single-filter SS-300. As a result of analysis of optimal yield change over time, It was confirmed that the ratio of optimal yield of single filter and dual filter increase over time. In order to evaluate the long-term change in water intake efficiency, we considered the point at which the initial optimal yield was reduced by 50%. The dual filter SD-300 is about 351.1% higher than SS-300, which is the same thickness filter, and about 579.0% higher than SS-100. From these results, Assuming that the point at which the initial quantity of water intake is reduced to 50% is the well life, double filters are expected to increase their lifespan by about 3.5 times over single filters of the same thickness and by about 5.8 times over typical single filter. These results can be used to design wells to river bank filtration or filtered seawater. In addition, it is possible to clarify the effect of the double filter through the comparison with the future field test results.

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF