• 제목/요약/키워드: Sand compaction piles(SCP)

검색결과 34건 처리시간 0.019초

모래와 쇄석을 이용한 저치환율 다짐말뚝공법의 응력분담특성에 관한 비교 (Comparison Study on Stress Sharing Characteristics of Sand or Gravel Compaction Piles with Low Replacement Area Ratio)

  • 유승경;조성민;김지용;심민보
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.443-452
    • /
    • 2005
  • The compaction pile methods with low replacement area ratio used sand(SCP) or gravel(GCP) has been usually applied to improvement of soft clay deposits. In order to design accurately compaction pile method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP and GCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which and elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And,through the results of the numerical analyses, each mechanical behaviors of compaction piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between compaction piles and clays.

  • PDF

저치환율 모래다짐말뚝에 의한 복합지반의 응력분담거동에 대한 실험적 연구 (Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio)

  • 유승경
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.253-261
    • /
    • 2003
  • 샌드드레인공법(SD공법)이나 고치환율의 샌드콤팩션파일공법(SCP공법)과 비교하여 저치환율SCP공법에 의해 개량된 복합지반의 역학거동은 모래말뚝과 점토지반 양방의 역학적 상호작용의 영향을 보다 현저하게 받는다. 따라서 본 공법의 적용에 있어서 침하저감효과나 모래말뚝 사이의 점토의 강도증가 등을 정확히 평가하기 위해서는 복합지반 내부에서의 모래말뚝과 점토와의 역학적 상호작용을 해명하여야 할 필요성이 있다. 본 연구에서는 저치환율의 모래말뚝이 타설된 복합지반에 대한 일련의 모형실험을 통하여 압밀중에 발생되는 모래말뚝과 점토 각각의 역학거동과 복합지반 내부에 대한 응력분담거동에 대하여 고찰하였다.

저치환율 SCP에 의한 복합지반의 압밀 과정중에 발생하는 응력분담거동과 그 메커니즘 (Stress Sharing Behaviors and its Mechanism During Consolidation Process of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio)

  • 유승경
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.301-310
    • /
    • 2003
  • 저치환율 샌드콤팩션파일공법(SCP공법)을 합리적으로 설계하기 위해서는 압밀중에 발생하는 복합지반 내부의 모래말뚝과 점토 양자의 상호역학거동을 정확히 파악하고 그 메커니즘을 이해하여야 할 필요성이 있다. 본 논문에서는 저치환율 SCP공법에 의해 개량된 복합지반의 압밀중에 발생하는 역학적 상호작용을 규명하기 위하여 일련의 수치해석을 실시하였다. 수치해석은 탄점소성 압밀 유한요소법을 적용하였으며, 그에 대한 신뢰성은 SCP에 의해 개량된 복합지반의 압밀거동에 대한 일련의 모형실험 결과와의 비교를 통해 검증할 수 있었다. 또한, 수치해석의 결과들로부터 저치환율의 모래말뚝이 타설된 복합지반의 모래말뚝과 점토에 대해 압밀중에 발생되는 각각의 역학거동과 복합지반 내부에 대한 응력분담 메커니즘에 대하여 규명하였다.

저치환율 SCP에 의한 복합지반의 응력분담 메커니즘에 관한 연구 (Study on Stress Sharing Mechanism Composition Ground Improved by SCP with Low Replacement Area Ratio)

  • 유승경;송정보;홍원표;윤길림
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.197-202
    • /
    • 2004
  • In order to design accurately sand compaction pile (SCP) method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And, through the results of the numerical analyses, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between sand piles and clays.

  • PDF

모래다짐말뚝과 널말뚝으로 처리된 연약점토지반의 거동 (Behavior of Soft Ground Treated with Sand Compaction Piles and Sheet Piles)

  • 유남재;정길수;박병수;김경수
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.93-99
    • /
    • 2006
  • Centrifuge model experiments were performed to investigate the confining effects of the sheet piles, installed to the sides of soft clay ground treated with sand compaction piles, on the bearing capacity and concentration ratio of composite ground. For the given g-level in the centrifuge model tests, replacement ratio of SCP and the width of surcharge loads on the surface of ground with SCP, the confining effects of installing the sheet piles on the edges of SCP ground on the bearing capacity, change of stress concentration ratio and failure mechanism were investigated. Kaolin, one of typical clay mineral, and Jumunjin standard sand were used as a soft clay ground and sand compaction pile irrespectively. As results of experiments, lateral confining effect by inserting the model sheet piles fixed to the loading plate was observed. For the strip surcharge loading condition, the yielding stress intensity in the form of the strip surcharge loads tends to increase with increasing the embedded depth of sheet piles. The stress concentration ratio was found not to be influenced consistently with the embedded depth of sheet piles whereas the effect of stress intensity on stress concentration ratio shows the general trend that values of stress concentration ratio are relatively high at the initial stage of loading and tend to decrease and converge to the certain values. For the failure mechanism in the case of reinforced with sheet piles, displacement behavior related to the punching failure, settlement right beneath the loading plate occurred since the soil was confined with sheet piles, was observed.

  • PDF

SCP 보강 점성토 지반의 지지력 및 응력분담특성 (Characteristics of Bearing Capacity and Stress Concentration of Clay Ground Improved with Sand Compaction Piles)

  • 유남재;박병수;정길수;고경환;김지성
    • 한국지반공학회논문집
    • /
    • 제21권1호
    • /
    • pp.81-91
    • /
    • 2005
  • 본 논문은 SCP로 보강된 점성토 지반의 파괴메카니즘 및 응력분담비, 지지력등에 미치는 설계변수에 대한 실험적 수치적 연구 결과이다. SCP로 보강된 점성토 지반의 거동을 알아보기 위하여 SCP의 치환율을 20, 40, $70\%$로 변화시키고, 비소성 세립분 함유량을 5, 10, $15\%$로 변화시켰으며 하중재하폭에 대한 지반개량폭의 비를 1, 2, 3으로 변화시키는 광범위한 원심모형실험을 실시하였다. 한편, 원심모형실험 결과를 모사하기 위하여 상용 유한요소 프로그램인 CRISP을 이용하였으며, 수치해석시 모래다짐말뚝은 탄소성모델로 점토지반은 한계상태이론에 기초한 수정 Cam-clay 모델을 사용하였다.

부산신항 1-1단계 SCP 개량지반 압밀 특성 (Consolidation Behavior of SCP Improved Ground at Pusan New Port Part 1-1)

  • 정종범;양상용;변기준
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.51-56
    • /
    • 2004
  • The sand compaction pile (SCP) method, which forms a composite ground by driving sand piles into clay deposit, is the most commonly used soil improvement techniques in many countries for more than 30 years. Installation of sand compaction piles reduces the amount of consolidation settlement and increases the bearing capacity of soft clay deposit. In this paper, field survey conducted to investigated the consolidation behavior of the composite ground improved by SCPs. It is suggested that the measured consolidation velocity is later than design theory, however measured consolidation settlement is higher than design theory.

  • PDF

Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay

  • Kwon, Jeonggeun;Kim, Changyoung;Im, Jong-Chul;Yoo, Jae-won
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.175-185
    • /
    • 2018
  • Sand Compaction Piles (SCPs) are constructed by feeding and compacting sand into soft clay ground. Sand piles have been installed with irregular cross-sectional shapes, and mixtures of both sand and clay, which violate the design requirement of circular shape according to the replacement area ratio due to various factors, including side flow pressure. Therefore, design assumptions cannot be satisfied according to the conditions of the ground and construction and the replacement area ratio. Two case histories were collected, examined, and interpreted in order to study the effect of the shape of SCPs. The effects of the distortion of SCP shape and the mixture of sand and clay were studied with the results of large direct shear tests. The design internal friction angle was secured with the irregular cross-sectional sand piles regardless of the replacement area ratio. The design internal friction angle was secured regardless of mixed condition when the mixture of sand and clay was higher than the replacement area ratio of 65%. Therefore, systematic construction management is recommended with a replacement area ratio below 65%.

역해석을 이용한 모래다짐말뚝(SCP)으로 개량된 연약점토지반의 압축지수 결정에 관한 연구 (A Study on a Compression Index for Settlement Analysis of SCP Treated Ground Using Back Analysis)

  • 황성필;임종철;권정근;강연익;주인곤
    • 한국지반환경공학회 논문집
    • /
    • 제11권7호
    • /
    • pp.5-14
    • /
    • 2010
  • 모래다짐말뚝(Sand Compaction Pile, 이하 SCP)으로 개량된 연약점토지반의 침하량 해석시, 근사법을 이용한 해석에서 응력분담비의 불확실성에 의해 발생되는 영향을 줄이고자, 유한요소해석 프로그램을 이용한 수치해석을 수행하였다. 모래다짐말뚝이 타설된 실내 모형압밀실험을 수행하였고, 이를 유한요소 프로그램으로 수치해석을 하였다. 실내실험과 같은 침하량을 도출하기 위해 역해석을 통한 혼합지반의 압축지수($C_c$)를 추정하고, 추세선을 활용하여 설계압축지수를 산정하는 식을 제시하였다. 또한, 이식을 치환율 45%인 현장에 적용하여 현장 적용성을 검증하였다.

Granular Pile에 의해 개량된 연약지반의 지지력 및 침하특성 (Characteristics of Settlement and Bearing Capacity of Soft Ground Improved by Granular Pile)

  • 천병식;여유현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.289-294
    • /
    • 2002
  • Sand Compaction Pile (SCP) method, which uses sand material, is frequently used in Korea. However, the use of sand for SCP faces environmental and economical problems with the shortage of its resources. Therefore, it is necessary to substitute other materials for compaction piles. One of the alternatives is using gravel in lieu of sand. Granular Pile, constituted with sand and crushed-stone, is one of the methods to improve soft clay and loose sandy ground. In this study, modeled pile load tests are performed in test cell. The observations are made on the consolidation and the variation of water table of three different grounds, original, sand pile installed, and granular pile installed ground. In addition, engineering characteristics such as bearing capacity, settlement and drainage are investigated. The test results show that Gravel Compaction Pile (GCP) is more efficient for increasing bearing capacity and reducing settlement than SCP and had similar pore water pressure dissipation to sand. Therefore, the results show that GCP can be a good substitution for SCP.

  • PDF