• Title/Summary/Keyword: Sand column

Search Result 226, Processing Time 0.021 seconds

Dynamic Deformation Characteristics of Fiber Mixed Silty Sand (섬유보강 실트질 모래의 동적 변형특성)

  • Heo, Joon;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.59-70
    • /
    • 2005
  • A series of resonant column test was performed to investigate the dynamic deformation characteristics of silty sand soils mixed with polypropylene fibrillated type fiber. Results show that optimum mixing ratios were $0.2\%$ for 19mm of cut fiber for shear modulus and $0.1\%$ for 60mm cut fiber fur damping ratio. As shear strain was increased, normalized values of shear modulus (G(Reinforced)/ G(Unreinforced)) of fiber reinforced soil were increased up to $10^{-3}\%\~10^{-1}\%$ ranges. However, normalized damping ratio (D(Reinforced/D(Unreinforced)) was diminished with an increase in strain beyond $10^{-3}\%\~10^{-1}\%$ for the damping capacity of soils mixed with fiber. Normalized shear modulus $(G/G_{max})$ obtained from the test was plotted in the chart suggested by Seed and Idriss. The shear modulus of silty sand was located between sand and gravel curves.

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

Proposal of Predictive Equations of Normalized Shear Modulus and Damping Ratio Curves for Loose Medium Sand Reinforced by Vinyl Strip-cement (비닐스트립-시멘트로 보강된 느슨한 중간 모래의 정규화 전단탄성계수 및 감쇠비 곡선 산정식 제안)

  • Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.33-45
    • /
    • 2021
  • In this study, predictive equations of the normalized shear modulus and the damping ratio curves for loose medium sands reinforced by vinyl strip-cement are proposed. Based on the results of a series of resonant-column tests (Yu, et al., 2018) conducted under the confining stresses of 15, 30, 60 kPa on sand specimens prepared with 40% relative density and reinforced by various contents of vinyl strip (0.0, 0.1, 0.3, 0.4%) and cement (0, 1, 2%), the equations estimating the normalized shear modulus and the damping ratio are proposed as functions of reinforcing conditions and confining stresses. The comparison between predicted and measured values of shear modulus and damping ratio shows a good agreement and the reliability of proposed predictive equations are validated by high R2-value greater than 0.9. Therefore, it is expected that the time and the cost required for constructing the normalized shear modulus and the damping ratio curves will be much reduced by using proposed equations in this study since those can easily be estimated without conducting resonant-column test.

Data Reduction and Analysis Technique for the Resonant Column Testing by Its Theoretical Modeling (공진주 실험의 이론적 모델링에 의한 자료분석 및 해석기법의 제안)

  • 조성호;황선근;강태호;권병성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.291-298
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.

  • PDF

Digital Image Analysis (DIA) for Estimating the Degree of Saturation of The Soil-Water Characteristic Curves (SWCC) (SWCC의 포화도를 구하기 위한 DIA 적용)

  • Min, Tuk-Ki;Huy, Phan Thieu
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.53-63
    • /
    • 2008
  • The aim of this study was to validate the suitability of an digital image analysis (DIA) method to measure the degree of saturation in the unsaturated conditions. This study was carried out on the Joo-Mun-Jin standard sand. A one-dimensional sand column test was used in the constant water level condition to get the correlation equation between the color number ($C_n$) and the measured degree of saturation (5). In addition, the hanging wale. column technique to determine the soil-water charactenstic curve (SWCC) was performed in a Buchner funnel. The average degree of saturation ($S_{ave}$) in the SWCC could be obtained by substituting average color number at each suction head value with the $C_n\;-\;S$ correlation equation. Comparisons were made between the measured results by the hanging water column test and those obtained from DIA method. Results showed that the DIA method tested here provided fairly good saturation distribution values in the drying and wetting processes.

Modeling As(III) and As(V) adsorption and transport from water by a sand coated with iron-oxide colloids

  • Ko, Il-Won;Lee, Cheol-Hyo;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.243-247
    • /
    • 2004
  • Tile development of a porous iron-oxide coated sand filter system can be modelled with the analytical solution of tile transport equation in order to obtain the operating parameters and investigate the mechanism of arsenic removal. The adsorbed amount from the model simulation showed the limitation of adsorption removal during arsenic transport. A loss reaction term in the transport equation plays a role in the mass loss in column conditions, and then resulted into the better model fitting, particularly, for arsenate. Further, the competitive oxyanions delayed the breakthrough near MCL (10 $\mu$g/L) due to the competitive adsorption. This is the reason why arsenate can be strongly attracted in tile interface of an iron-oxide coated sand, and competing oxyanions can occupy the adsorption sites. Therefore, arsenic retention was regulated by non-equilibrium of arsenic adsorption in a porous iron-oxide coated sand media. The transport-limited process seemed to be affect the arsenic adsorption by coated sand.

  • PDF

Evaluation of Ground Improvement on Sands at Yongjong Island Geotechnical Experimental Site (영종도 지반공학 야외시험장에서의 사질토지반 개량효과 평가)

  • 김동수;박형춘;김영웅;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.439-446
    • /
    • 1999
  • In situ experimental studies were Performed at Yongjong Island Geotechnical Experimental Site to evaluate the ground densification on sand deposited. Standard penetration test, cone penetration test, and SASW test were performed and soil profiles and quality of ground improvements were evaluated. The feasibility of applying SASW method were verified by comparing test results. The evaluation technique of in-situ density using SASW and resonant column tests was proposed, and the reliability of proposed method was verified by performing case studies.

  • PDF

Adhesion and Release of Bacteria in Quartz and Iron-coated Sands: Effect of Ionic Strength (석영 및 철피복 모래에서 박테리아 부착.탈착: 이온강도의 영향)

  • Lee, Chang-Gu;Park, Seong-Jik;Kim, Hyon-Chong;Han, Yong-Un;Park, Jeong-Ann;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.287-293
    • /
    • 2009
  • This study investigated the influence of ionic strength on the adhesion and release of bacteria (Escherichia coli, Bacillus subtilis, and Staphylococcus aureus) in quartz and iron-coated sands using column experiments. Results show that the mass recovery remained constant (E. coli = 13.7${\pm}$0.5%, B. subtilis = 9.8${\pm}$1.3%, S. aureus = 13.0${\pm}$2.1%) in iron-coated sand while it decreased from 80.7 to 45.3% (S. aureus) in quartz sand with increasing ionic concentrations from 1 to 100 mM. As the ionic concentrations of leaching solution was lowered from 100 to 0.1 mM, average 39.1% of bacterial detachment was quantified from quartz sand, but no bacterial release was observed in iron-coated sand. The phenomenon observed in iron-coated sand can be attributed to the inner-sphere complexes between bacteria and coated sand, which have minimal effect from ionic strength. This study improves our knowledge regarding the bacterial interaction with surface-modified porous media.

Improving the Initial Effluent Turbidity by Polyaluminium Chloride(PAC) Coating in Rapid Sand Filtration (급속모래여과에서 PAC 피복에 의한 초기 유출수의 탁도 개선)

  • Yoon, Tae-Han;Kim, Woo-Hang
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.253-260
    • /
    • 2002
  • The purpose of this research was to describe the mechanisms and prevention of initial degradation in turbidity of the sand filter effluent. The method used was by adding a coagulant (PAC) to the sand filter after backwashing as a means of reducing turbidity. It was found that adding 80 mg/L of PAC solution to the sand filter was very effective in improving the initial effluent turbidity. A turbidity removal efficiency of 99 % was observed in the initial term period as compared to a 70% efficiency without PAC addition. The PAC solution added to the sand filter resulted in high aluminum concentration at the upper layer as compared with the bottom layer of the sand filter column. A change in the zeta potential to a strong positive-ions at upper layer was observed at this time but only a small change was obtained at the bottom. This result showed that the zeta potential of the sand was changed to positive with PAC coating. The effect of pH on zeta potential with PAC addition was also investigated. Zeta potential was greatly changed to positive-ion at pH 4~6. A series of experiments was then conducted in this study to optimize the pH of the PAC solution to be added to the sand filter after backwashing. The removal efficiency of turbidity was found to be highest at pH 5. This result suggested that hydrolyzed aluminium species attached to the surface of the sand enhanced the removal of turbidity of the effluent.

The Characteristics of Hydrogeological Parameters of Unconsolidated Sediments in the Nakdong River Delta of Busan City, Korea

  • Khakimov, Elyorbek;Chung, Sang Yong;Senapathi, Venkatramanan;Elzain, Hussam Eldin;Son, JooHyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.27-41
    • /
    • 2017
  • This study dealt with the characteristics and the interrelations of hydrogeological parameters such as hydraulic conductivity, dispersivity and effective porosity of unconsolidated sediments for providing the basic data necessary for the planning of the management and preservation of groundwater quality in the Nakdong River Delta of Busan City, Korea. Groundwater quality in this area has been deteriorated due to seawater intrusion, agricultural fertilizer and pesticide, industrial wastewater, and contaminated river water. The physical properties (grain size distribution, sediment type, sorting) and aquifer parameters (hydraulic conductivity, effective porosity, longitudinal dispersivity) were determined from grain size analysis, laboratory permeability test and column tracer test. Among 36 samples, there were 18 Sand (S), 7 Gravelly Sand (gS), 5 Silty Sand (zS), 5 Muddy Sand (mS), and 1 Sandy Silt (sZ). Hydraulic conductivity was determined through a falling head test, and ranged from $9.2{\times}10^{-5}$ to $2.9{\times}10^{-2}cm/sec$ (0.08 to 25.6 m/day). From breakthrough curves, dispersivity was calculated to be 0.35~3.92 cm. Also, effective porosity and average linear velocity were obtained through the column tracer test, and their values were 0.04~0.46 and 1.06E-04~6.49E-02 cm/sec, respectively. Statistical methods were used to understand the interrelations among aquifer parameters of hydraulic conductivity, effective porosity and dispersivity. The relation between dispersivity and hydraulic conductivity or effective porosity considered the sample length, because dispersivity was affected by experimental scale. The relations between dispersivity and hydraulic conductivity or effective porosity were all in inverse proportion for all long and short samples. The reason was because dispersivity was in inverse proportion to the groundwater velocity in case of steady hydrodynamic dispersion coefficient, and groundwater velocity was in proportion to the hydraulic conductivity or effective porosity. This study also elucidated that longitudinal dispersivity was dependent on the scale of column tracer test, and all hydrogeological parameters were low to high values due to the sand quantity of sediments. It is expected that the hydrogeological parameter data of sediments will be very useful for the planning of groundwater management and preservation in the Nakdong River Delta of Busan City, Korea.