• Title/Summary/Keyword: Sand and stone chips

Search Result 3, Processing Time 0.018 seconds

The Study on Blast Effects of Stemming Materials by Trauzl Lead Block Test and High Speed 3D-DIC Systems (트라우즐 연주시험 및 고속 3차원 이미지영상상관 기법을 이용한 전색재 별 발파효과에 대한 연구)

  • Ko, Younghun;Seo, Seunghwan;Kim, Sik;Chung, Youngjun;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.13-25
    • /
    • 2021
  • The most widely used method for determining the blast effects of explosives is the Trauzl test. This test is used to measure the explosive power (strength) of a substance by determining volume increase, which is produced by the detonation of a tested explosive charge in the cavity of a lead block with defined quality and size. In this paper, Trauzl lead block test and High speed 3D-DIC (Digital Image Correlation) system were conducted to evaluate the stemming effect of the blast hole. The effects of stemming materials can be expressed as the expansion of the cavity in a standard lead block through explosion of the explosives. The blasting experiment was conducted with emulsion explosives. The stemming material in the blast hole of lead block, which was adopted in this study, were using sand and stone chips. Results of blasting experiment and numerical analysis showed that the expansion rates of lead block were most affected by stone chips followed by sand. Also, as result of dynamic strain measurement on the lead block surface of High speed 3D-DIC system, the displacement and surface strain on the block were the highest in the experiment case of stone chips stemming.

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik;Ozlem Ozturk;Ferhat Aydin;Yasin Onuralp Ozkilic;Emrah Madenci
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.475-487
    • /
    • 2024
  • The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

The Change of Longitudinal Salt Movement in the Soil according to the Materials and Place of Salt Movement Prevent at Saemangum Reclaimed Land from the Sea (새만금 해안간척지의 토양염분 차단재료와 차단위치별 토양염분 경시적 변화)

  • Kim, Ju-Soeng;Kim, Do-Gyun;Lee, Im-Kyun;Lee, Jae-Heon;Lee, Yeung-Sang;Chae, Jeung-Seug;Park, Seok-Gon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.1
    • /
    • pp.117-126
    • /
    • 2017
  • This study was carried out to figure out on the changes of longitudinal salt movement in the soil through the soil according to the materials and thickness of salt prevent materials and the place of salt prevent at reclaimed land from the sea which is one of the most serious problems when tree planting. Changes of soil salinity were different depending on the seasons. In particular, the soil salinity was lower during the rainy season. But during the dry seasons including early summer before the rainy season and winter season, salinity was relatively higher. Among the seven interruption materials, crushed stone, dredged sand and wood chips showed better interruption effects than the other materials. The interruption effect of salt movement was highest in the both of side and bottom interruption treatment of salt movement than the side interruption treatment of salt movement or the bottom interruption treatment of salt movement. The thickness of the layer should be at least 20cm to prevent salinity effectively.