• Title/Summary/Keyword: Samsung

Search Result 10,979, Processing Time 0.038 seconds

Data Acquisition and Control System for a Large-scale Superconducting Test Facility (대형 초전도자석 테스트설비의 Data Acquisition&Control시스템)

  • Y. Chu;S. Baek;S. Baang;M. Kim;S. Lee;B. Lim;W. Chung;H. Park;K. Park
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.303-305
    • /
    • 2002
  • SSTF(Samsung Superconducting Test Facility) has been constructed at Samsung Advanced Institute of Technology to test the KSTAR(Korea Superconducting Tokamak Advanced Research) superconducting magnets and conductors. The SSTF DAC(Data Acquisition and Control) system basically consists of VME I/O modules, host PCs, and Ethernet links. VxWorks is used for the real-time OS of the VME IOC(Input/output Controller). EPICS (Experimental Physics and Industrial Control System) provides a software architecture for the communication between IOCs and host PCs. For the efficient management of measured data, the database management programs through NFS(Network File System) have been developed and successfully operated. In this paper, the current status of the SSTF DAC system, DBMS(DataBase Management System), recent test results, and future plans are presented.

  • PDF

32'-diagonal Gated CNT Cathode

  • Lee, Chun-Gyoo;Lee, Sang-Jo;Lee, Sang-Jin;Chi, Eung-Joon;Lee, Jin-Seok;Yun, Tae-Il;Lee, Byung-Gon;Han, Ho-Su;Ahn, Sang-Hyuck;Jung, Kyu-Won;Kim, Hun-Yeong;Yun, Bok-Chun;Park, Sung-Man;Choi, Jong-Sik;Oh, Tae-Sik;Kang, Sung-Kee;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.303-304
    • /
    • 2002
  • 32"-diagonal gated carbon nanotube(CNT) cathodes named under-gate cathodes for large-size display applications have been fabricated and characterized. The emission uniformity looks fine, even without the resistive layer. The emission performance has been improved by scaling down the cathode electrode dimension.

  • PDF

Development of World's Largest 21.3' LTPS LCD using Sequential Lateral Solidification(SLS) Technology

  • Kang, Myung-Koo;Kim, Hyun-Jae;Chung, Jin-Koo;Kim, Dong-Beom;Lee, Su-Kyung;Kim, Cheol-Ho;Chung, Woo-Seok;Hwang, Jang-Won;Joo, Seung-Yong;Meang, Ho-Seok;Song, Seok-Chun;Kim, Chi-Woo;Chung, Kyu-Ha
    • Journal of Information Display
    • /
    • v.4 no.4
    • /
    • pp.4-7
    • /
    • 2003
  • The world largest 21.3" LTPS LCD has been successfully developed using SLS crystallization technology. Integration of gate circuit, transmission gate and level shifter was successfully performed in a large area display. Uniform and high performance of high quality grains of SLS technology make it possible to realize a uniform large size LTPS TFT-LCD with half the number of data driver IC's that is typically used in a-Si LCD. High aperture ratio of 65 % was achieved using an organic inter insulating method which lead to a high brightness of 500 cd/$cm^2$.

Novel tandem white OLED panel architecture for wide color gamut and viewing angle

  • Lee, Sung-Hun;Kim, Mu-Gyeom;Song, Jung-Bae;Kim, Sang-Yeol;Tamura, Shinichiro;Kang, Sung-Kee;Kim, Jong-Min;Lee, Sung-Soo;Choi, Jun-Ho;Ha, Jae-Kook;Chu, Chang-Woong;Kim, Chi-Woo;Lee, Jin-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1112-1115
    • /
    • 2008
  • A very high current efficiency of 28 cd/A for three-mode microcavity tandem WOLED was successfully demonstrated. The 101 % of NTSCu'v' ratio of this white OLED with LCD color filter was achieved. In addition to wide color gamut, the highest delta (u'v') of respective RGB colors among the viewing angles 0 and 60 degree is just 0.042 and that of white color is less than 0.02.

  • PDF

Development of World's Largest 21.3' LTPS LCD Using Sequential Lateral Solidification (SLS) Technology

  • Kang, Myung-Koo;Kim, H.J.;Chung, J.K.;Kim, D.B.;Lee, S.K.;Kim, C.H.;Chung, W.S.;Hwang, J.W.;Joo, S.Y.;Maeng, H.S.;Song, S.C.;Kim, C.W.;Chung, Kyu-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.241-244
    • /
    • 2003
  • The world largest 21.3" LTPS LCD has been successfully developed using SLS crystallization technology. Successful integration of gate circuit, transmission gate and level shifter was performed in a large area uniformly. Uniformity and high performance from high quality grains of SLS technology make it possible to come true a uniform large size LTPS TFT-LCD with half number of data driver IC's used in typical a-Si LCD. High aperture ratio of 65% was obtained using an organic inter insulating method, which lead a high brightness of 500cd/cm2.

  • PDF

High Luminance 3D Built-In PDP Panel with Fast-Decaying Phosphor

  • Kim, Young-Kwan;Yoo, Young-Gil;Lee, Soon-Rewl;Kim, Min-Kyu;Kim, Jeong-Hee;Chung, Kyeong-Woon;Choi, Ick-Kyu;Song, Jay-Hyok;Song, Yu-Mi;Kim, Yoon-Chang;Heo, Eun-Gi;Zang, Dong-Sik;Chung, Chong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.127-130
    • /
    • 2009
  • High luminance 3D built-in PDP panel was developed with newly adopted fast-decaying phosphor. Luminance of 3D PDP was increased about 40% by reducing the particle size of RGB phosphors and using $Y_3(Al,Ga)_5O_{12}:Ce^{3+}$ phosphor. Decay time of developed 3D PDP was 5.2ms/4.9ms for Red/Green color.

  • PDF

Highly Robust Bendable a-IGZO TFTs on Polyimide Substrate with New Structure

  • Kim, Tae-Woong;Stryakhilev, Denis;Jin, Dong-Un;Lee, Jae-Seob;An, Sung-Guk;Kim, Hyung-Sik;Kim, Young-Gu;Pyo, Young-Shin;Seo, Sang-Joon;Kang, Kin-Yeng;Chung, Ho-Kyoon;Berkeley, Brain;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.998-1001
    • /
    • 2009
  • A new flexible TFT backplane structure with improved mechanical reliability is proposed. Amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors based on this structure have been fabricated on a polyimide substrate, and the resultant mechanical durability has been evaluated in a cyclic bending test. The panel can withstand 10,000 bending cycles at a bending radius of 5 mm without any noticeable TFT degradation. After 10K bending cycles, the change of threshold voltage, mobility, sub-threshold slope, and gate leakage current were only -0.22V, -0.13$cm^2$/V-s, -0.05V/decade, and $-3.05{\times}10^{-13}A$, respectively.

  • PDF