• Title/Summary/Keyword: Samsanjeil Mine

Search Result 5, Processing Time 0.02 seconds

Contamination and Mobility of Toxic Trace Elements in Tailings of Samsanjeil Mine (삼산제일광산 광미 내 유해 미량원소의 오염 및 이동도)

  • Yeon Kyu-Hun;Lee Pyeong-Koo;Youm Seung-Jun;Choi Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.451-462
    • /
    • 2005
  • In order to examine the extent of environmental contamination at abandoned Samsanjeil Cu mines in Kosung-kun, Kyeongsangnam-do, we have investigated the contaminations and mobility of toxic trace elements from mine wastes including about 280,000 tonnages of tailings by chemical experiments (total extraction, partial extraction by 0.1N HCI and sequential extraction procedure). Total concentrations of trace elements showed that Cu, As, Co, Zn, Pb, and Cd concentrations in tailings were 14.0, 3.6, 3.1, 2.1, 2.1 and 1.6 times greater than those in background soil, respectively. From the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals decrease in order of $Zn(29.0\%)>Cu(12.3\%)Pb(9.6\%)>Cd(3.0\%)>As=Co(0.0\%)$. Based on the concentrations, chemical speciations of tailings, waste rock and nearby soil, it was revealed that Cu and Zn were the most possible elements to contaminate the surrounding environment in Samsanjeil mine area. In addition, the tailings had total trace metal concentrations below Dutch guideline values except Cu, and they might not affect adverse impact on environment.

Mineralogy and the Behavior of Heavy Metals at Different Depths in Tailing Impoundment of the Samsanjeil mine (삼산제일광산 광미 매립지의 매립 심도에 따른 광물 변화 및 중금속의 거동)

  • Kim, Heong-Jung;Kim, Yeong-Kyoo;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.229-240
    • /
    • 2009
  • In Gosung, the symptoms similar to itai-itai disease from neighboring residents of the Samsanjeil mine have been social issues. Therefore, various researches on the behavior of heavy metals of the tailings impoundment of 280,000 ton in the Samsanjeil mine are required. In this paper, mineralogical and geochemical studies on the tailings at different depths in the Samsanjeil mine were investigated and the factors on the behavior of heavy metals were also studied. At two sampling sites (NN and SN), samples were collected at different depths down to 1 m. At NN sites, pH values decreased with depth, while those at SN sites did not show significant changes. XRD analysis showed that the main minerals in the tailings were quartz, microcline, muscovite, and chlorite with minor amount of gypsum. There were no noticeable changes in the mineral composition with depth. At NN sites, the amount of calcite was negligible, and jarosite, which usually occurs at acid soil or acid mine drainage at pH lower than 4, was identified. However, the samples at SN site contained relatively high contents of calcite with pyrite. Therefore, calcite seemed to buffer the acid and control pH at SN site. The contents of heavy metals in tailings were in the order of Cu > As > Zn > Pb > Co > Cr > Ni > Cd. The heavy metal concentrations in the tailings were closely related with pH changes. The concentrations of Cd and Co were much lower at NN site at which pH values are low than those at SN sites. Contrary to that, Cr and As which exist as oxyanions showed higher concentrations at SN sites. This result showed that the behaviors of heavy metals in our study area were controlled by pH which is influenced by the contents of calcite.

Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area (삼산제일.삼봉 동광산 주변 수계의 중금속 오염도 평가)

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.171-187
    • /
    • 2006
  • The status of heavy metal contamination was investigated using chemical analyses of stream waters and sediments obtained from Samsanjeil and Sambong Cu mining area in Goseong-gun, Gyeongsangnam-do. In addition, the degree and the environmental risk of heavy metal contamination in stream sediments was assessed through pollution index (Pl) and danger index (DI) based on total digestion by aqua regia and fractionation of heavy metal contaminants by sequential extraction, respectively. Not only the degree of heavy metal contamination was significantly higher in Samsanjeil area than in Sambong area, but its environmental risk was also revealed much more serious in Samsanjeil area than in Sambong area. The differences in status and level of contamination and environmental risk between both two mining areas may be attributed to existence of contamination source and geology. Acid mine drainage is continuously discharged and flows into the stream in Samsanjeil mining area, and it makes the heavy metal contamination in the stream more deteriorated than in Sambong mining area in which acid mine drainage is not produced. In addition, the geology of Samsanjeil mining area is mainly comprised of andesitic rocks including a small amount of calcite and having lower pH buffering capacity fer acid mine drainage, and it is likely that the heavy metal contamination cannot be naturally attenuated in streams. On the contrary, the main geology of Sambong mining area consists of pyroclastic sedimentary Goseong formation containing a high content of carbonates, particularly calcite, and it seems that these carbonates of high pH buffering capacity prevent the heavy metal contamination from proceeding downstream in stream within that area.

The Preliminary Study of the Secondary Precipitates from Samsanjeil and Sambong Mine, Goseong, Gyeongnam (경남 고성군 삼산면 삼산제일광산과 삼봉광산 주변 하천 침전물에 관한 예비 연구)

  • Cho, Hyen-Goo;Chang, Byoung-Jun;Kim, Soon-Oh;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.129-138
    • /
    • 2006
  • In this study, we identified the secondary precipitates from Samsan-jeil and Sambong mine, Goseong, Gyeongnam by means of scanning electron microscopy, electron probe microanalysis and X-ray powder diffraction analysis. Copper sulfide minerals had been produced from the mines during last few decades, however they are not worked. White and blue precipitates were found at the downstream of mine rock dump at Sambong mine and green one was at Samsan-jeil mine. The white precipitate covered the host rock surface with thickness of $30{\mu}m$, and is a kind of diatom with $10{\mu}m$ in length and $3{\mu}m$ in width. It is a species Fragilaria constuens, which is contained a order Pennales(pennate diatom) and lives in fresh water. The blue precipitate is the alteration product of chalcopyrite. It resultes in the increase in the ratio Cu:Fe from 5 to 13. The green precipitate has worm-like morphology with $10{\sim}20nm$ in diameter and $200{\sim}300nm$ in length. It is mainly composed of secondary copper sulfate such as woodwardite. However, it could be formed by the activity of microorganism, because the copper content is more than any secondary copper sulfate reported in copper sulfide mine. In order to identity the green precipitate exactly, the further research is needed.

Comparison of Human Health Risk Assessment of Heavy Metal Contamination from Two Abandoned Metal Mines Using Metal Mine-specific Exposure Parameters (국내 폐금속 광산에 특화된 노출인자를 이용한 두 폐금속 광산 중금속 오염에 대한 인체위해성평가 비교)

  • Lim, Tae-Yong;Lee, Sang-Woo;Cho, Hyen Goo;Kim, Soon-Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.414-431
    • /
    • 2016
  • There are numerous closed and abandoned mines in Korea, from which diverse heavy metals (e.g., As, Cd, Cu, Pb, Zn) are released into the surrounding soil, groundwater, surface water, and crops, potentially resulting in detrimental effects on the health of nearby residents. Therefore, we performed human risk assessments of two abandoned metal mines, Yanggok (YG) and Samsanjeil (SJ). The exposure parameters used in this assessment were specific to residents near mines and the included exposure pathways were relevant to areas around metal mines. The computed total excess carcinogenic risks for both areas exceeded the acceptable carcinogenic risk ($1{\times}10^{-6}$), indicating that these areas are likely unsafe due to a carcinogenic hazard. In contrast, the non-carcinogenic risks of the two areas differed among the studied receptors. The hazard indices were higher than the unit risk (=1.0) for male and female adults in YG and male adults in SJ, suggesting that there are non-carcinogenic risks for these groups in the study areas. However, the hazard indices for children in YG and female adults and children in SJ were lower than the unit risk. Consumption of groundwater and crops grown in the area were identified as major exposure pathways for carcinogenic and non-carcinogenic hazards in both areas. Finally, the dominant metals contributing to carcinogenic and non-carcinogenic risks were As and As, Cu, and Pb, respectively. In addition, the carcinogenic and non-carcinogenic risks of YG were evaluated to be 10 and 4 times higher than those of SJ, respectively, resulted from the relatively higher exposure concentration of As in groundwater within SJ area. Because of lacking of several exposure parameters, some of average daily dose (ADD) could not be computed in this study. Furthermore, it is likely that the ADDs of crop-intake pathway included some errors because they were calculated using soil exposure concentrations and bioconcentration factor (BCF) rather than using crop exposure concentrations.