• Title/Summary/Keyword: Sampling volume

Search Result 344, Processing Time 0.029 seconds

Effect of sampling volume on the breakthrough of charcoal tube during vinyl chloride monomer sampling (공기중 염화비닐단량체의 포집시 공기 포집량이 파과에 미치는 영향)

  • Yoon, Jon Jung;Lim, Nam Gu;Kim, Chi Nyun;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.241-248
    • /
    • 2001
  • The main factors of breakthrough are known to sampling time, flow rate, concentration of the sample, temperature, humidity, and the physical characteristics of the solid sorbent tube. However, no study has been reported the effect of temperature and sampling volume on the breakthrough of acharcoal tube during vinyl chloride monomer (VCM) sampling. The objective of this study is to suggest the optimal sampling condition during VCM sampling based on National Institute for Occupational Safety and Health (NIOSH) method. To evaluate adequate sampling volume for VCM without breakthrough, volume of 1, 2, 3, 4, and 5 L each from VCM of 1, 5, 10, 15, and 20ppm at flow rate of 0.05 L/min were sampled in $22^{\circ}C$ and $40^{\circ}C$. At $22^{\circ}C$, in the case of 1, 5, 10, and 15ppm, VCM was adsorbed completely in first section of charcoal tube regardless of sampling volume. But in 20ppm, detection rates are 99.56% in first section and 0.44% in second section. At $40^{\circ}C$ of 1ppm, VCM was adsorbed completely in first section. In 10, 15, and 20ppm, detection rates of second, third, and forth sections were decreased significantly by reduction of sampling volume. In determination of breakthrough based on NIOSH method, no breakthrough was occurred in 20ppm at $22^{\circ}C$. At $40^{\circ}C$, breakthrough was occurred in 10, 15, and 20ppm when sampling volume was 5L. Although no breakthrough was occurred when sampling volume was 3L. Finally, in environment of temperature around $22^{\circ}C$, breakthrough may not occurred up to 20ppm during sampling for VCM. During sampling for VCM in environment of temperature around $40^{\circ}C$, no breakthrough occurred in 1-5ppm and 10-20ppm when sampling volume is 5L and 3L respectively. This result suggests that the sampling volume should be considered when VCM sampling under hot conditions (> $22^{\circ}C$) by the NIOSH method No. 1007.

  • PDF

Evaluation of Sampling Methodology for the Measurement of Polycyclic Aromatic Hydrocarbons in the Atmosphere (대기 중 다환방향족 탄화수소의 측정을 위한 시료포집방법의 비교평가)

  • 백성옥;최진수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.43-62
    • /
    • 1998
  • This study was carried out to investigate the influence of different sampling methods on the measured concentrations of polycyclic aromatic hydrocarbons (PAH) both in the vapor and particulate phases, and to evaluate the effects of ambient temperature and sampling duration on the losses of PAH associated with particle samples due to volatilization. The experimental protocol of this study is consisted of two parts. The first part is related to the comparison of PAH concentrations measured by 4 different sampling systems, each of which involves different sampling principles for comparison purposes, including a medium-volume sampler with XAD-2 adsorbent, a high-volume sampler with polyurethane foam (PUF), two identical low-volume samplers: one with XAD-2 and the other with PUF, respectively. The second part of this study is to quantitatively estimate the losses of particulate PAH samples by volatilization during sampling, using two identical low-volume samplers: one was used for changing the filters every 3 hrs, 6 hrs, 12 hrs, and 24 hrs sampling, while the other was maintained for continuous 48 hours sampling without changing the filter. The concentrations of volatile PAH including 2-3 rings appeared to be significantly affected by the type of adsorbent. Measured levels of these lower-molecular weight PAH by XAD-2 adsorbent were much higher than those by PUF for both high-volume and low-volume sampling. PUF was found to give rise to unknown components that interfered with the PAH analysis, even after extensive clean-up. In addition, the retention efficiency of PUF for lower molecular weight PAH was subject to a large variation, being significantly influenced by sampling conditions such as ambient temperature. However, the effect of sampling methods with different adsorbents on the measured levels of semi-volatile compounds including 4 rings PAH such as fluoranthene, pyrene, BaA and chrysene, was not so much significant as more volatile PAH compounds. It was also clear from this study that volatilization losses of the semi-volatile PAH collected on the filters were inevitably occurred during prolonged sampling, and hence the results obtained from conventional sampling methods may not be expected to yield an accurate distribution of PAH between the vapor and particulate phases.

  • PDF

Study on the Estimate of Stand Volume in the Pitch Pine Forest (임분재적(林分材積) 추정(推定)에 관(關)한 연구(硏究))

  • Lee, Yeo Ha
    • Journal of Korean Society of Forest Science
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 1973
  • This survey was estimated under the ratio estimate such as single class method, simple random sampling method, compound ratio sampling method, separate ratio sampling method and average tree sampling method artificial forest pitch pine volume. The following results were realized by the ratio estimates. At the above table simple random sampling method and compound ratio sampling method are the only ones which is included the actual stand volume in the ratio estimatedstand volume. It is thought that the sampling was in a such good result was because of stand structual stands were simple forest. The most simple measurement and calcuation on the stand volume estimates, in order, would be (1) single class method, (2) simple random sampling method (3) average tree method (4) separate ratio sampling method and compound ratio sampling method, and at the planted evenaged forest the method has realized the best results in obtaining good accuracy and the measure stand volume with least time, expenses and labor in considerably.

  • PDF

High Quality Volume Rendering Using the Empty Space Jittering and the Sampling Alignment Method (빈공간 교란과 샘플링 위치 정렬을 이용한 고화질 볼륨 가시화)

  • Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.852-861
    • /
    • 2013
  • When users use medical volume rendering applications, selecting specific region of volume data and observing the region by magnification is a common process.As the wood-grain artifact is arise from the magnified image, the jittered sampling technique has been used to remove the problem. However, the jittered sampling leads to some noise along the volume edge. In this research, we reveal the reason of the noise, and present a solution. To remove the wood-grain artifact without the noise, we propose the empty space jittering and the sampling alignment method. Using these methods, we can produce high quality volume rendering images without noticeable time consuming.

A Comparative Study Between Light Extinction and Direct Sampling Methods for Measuring Volume Fractions of Twin-Hole Sprays Using Tomographic Reconstruction

  • Lee, Choong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1986-1993
    • /
    • 2003
  • The spatially resolved spray volume fractions from both line-of-sight data of direct measuring cells and a laser diffraction particle analyzer (LDPA) are tomographically reconstructed by the Convolution Fourier transformation, respectively. Asymmetric sprays generated from a twin-hole injector are tested with 12 equiangular projections of measurements. For each projection angle, a line-of-sight integrated injection rate was measured using a direct sampling method and also a liquid volume fraction from a set of line-of-sight Fraunhofer diffraction measurements was measured using a light extinction method. Interpolated data between the projection angles effectively increase the number of projections, significantly enhancing the signal-to-noise level in the reconstructed data. The reconstructed volume fractions from the direct sampling cells were used as reference data for evaluating the accuracy of the volume fractions from the LDPA.

Improved Sampling Method For Volume Rendering (Volume Rendering를 위한 향상된 Sampling 방법)

  • 박재영;이병일;최흥국
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.213-216
    • /
    • 2000
  • 본 논문에서는 volume rendering 기법을 이용하여 2차원 MRI 영상들을 합성하여 3차원 영상 만들 때 보다 해상도를 높이기 위한 개선된 sampling방법을 소개한다 2차원 슬라이스 영상들이 3차원으로 재구성할 때 voxel 기반으로 렌더링을 하기 때문에 오브젝트의 내부 영역까지도 볼 수 있는 것이 volume rendering의 가장 큰 장점이다. 따라서 영상을 재구성하는 과정에서 보다 향상된 interpolation을 적용시켜서 공간 해상도를 향상시키면 보다 명확하게 오브젝트 내부 정보를 살펴 볼 수 있다. 본 논문에서는 nearest neighbor 이나 linear 같은 interpolation으로 sampling한 방법보다 cubic interpolation을 3차원 공간에서 적용 시켜서 보다 resampling이 잘 되도록 하여 해상도를 향상시켜 보았다. 이렇게 향상된 Interpolation 적용시켜서 렌더링할 때 얼마나 오브젝트 내부 영역이 잘 가시화가 되었는지 transfer function을 적용시켜서 오브젝트 내부 정보를 렌더링 해보았고, 임의의 축으로 오브젝트을 잘라서 2D 단면 영상으로 출력해 보았다. 보다 향상된 interpolation을 적용시켜서 resampling을 하면 영상 해상도가 개선되었음을 볼 수 있었다.

  • PDF

The Volume Measurement of Air Flowing through a Cross-section with PLC Using Trapezoidal Rule Method

  • Calik, Huseyin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.872-878
    • /
    • 2013
  • In industrial control systems, flow measurement is a very important issue. It is frequently needed to calculate how much total fluid or gas flows through a cross-section. Flow volume measurement tools use simple sampling or rectangle methods. Actually, flow volume measurement process is an integration process. For this reason, measurement systems using instantaneous sampling technique cause considerably high errors. In order to make more accurate flow measurement, numerical integration methods should be used. Literally, for numerical integration method, Rectangular, Trapezoidal, Simpson, Romberg and Gaussian Quadrature methods are suggested. Among these methods, trapezoidal rule method is quite easy to calculate and is notably more accurate and contains no restrictive conditions. Therefore, it is especially convenient for the portable flow volume measurement systems. In this study, the volume measurement of air which is flowing through a cross-section is achieved by using PLC ladder diagram. The measurements are done using two different approaches. Trapezoidal rule method is proposed to measure the flow sensor signal to minimize measurement errors due to the classical sampling method as a different approach. It is concluded that the trapezoidal rule method is more effective than the classical sampling.

Comparison of Simple Random Sampling and Two-stage P.P.S. Sampling Methods for Timber Volume Estimation (임목재적(林木材積) 산정(算定)을 위(爲)한 Simple Random Sampling과 Two-stage P.P.S. Sampling 방법(方法)의 비교(比較))

  • Kim, Je Su;Horning, Ned
    • Journal of Korean Society of Forest Science
    • /
    • v.65 no.1
    • /
    • pp.68-73
    • /
    • 1984
  • The purpose of this paper was to figure out the efficiencies of two sampling techniques, a simple random sampling and a two-stage P.P.S. (probability proportional to size) sampling, in estimating the volume of the mature coniferous stands near Salzburg, Austria. With black-and-white infrared photographs at a scale 1:10,000, the following four classes were considered; non-forest, young stands less than 40 years, mature beech and mature coniferous stands. After the classification, a field survey was carried out using a relascope with a BAF (basal area factor) 4. For the simple random sampling, 99 points were sampled, while for the P.P.S. sampling, 75 points were sampled in the mature coniferous stands. The following results were obtained. 1) The mean standing coniferous volume estimate was $422.0m^3/ha$ for the simple random sampling and $433.5m^3/ha$ for the P.P.S. sampling method. However, the difference was not statistically significant. 2) The required number of sampling points for a 5% sampling error were 170 for the two stage P.P.S. sampling, but 237 for the simple random sampling. 3) The two stage P.P.S. method reduced field survey time by 17% as compared to the simple random sampling.

  • PDF

A Simple Proposition for Improving Industrial Hygiene Air Sampling Methods

  • Paik, Samuel Y.;Zalk, David M.
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.389-392
    • /
    • 2019
  • When conducting an exposure assessment, the primary goal of the industrial hygienist is to fully characterize the worker's exposure during a work shift to compare it with an occupational exposure limit. This applies regardless of the duration of the work activity as an activity that is relatively short in duration can still present exposure in excess of the occupational exposure limit even when normalized over an 8-hr shift. This goal, however, is often impeded by the specification of a minimum sample volume in the published sampling method, which may prevent the sample from being collected or submitted for analysis. Removing the specification of minimum sample volume (or adjusting it from a requirement to a recommendation), in contrast, allows for a broader assessment of jobs that consist of short-duration and high-exposure activities and also eliminates the unnecessary practice of running sampling pumps in clean air to collect a specified, minimum volume.

Fast Volume Visualization Techniques for Ultrasound Data

  • Kwon Koo-Joo;Shin Byeong-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.6-13
    • /
    • 2006
  • Ultrasound visualization is a typical diagnosis method to examine organs, soft tissues and fetus data. It is difficult to visualize ultrasound data because the quality of the data might be degraded by artifact and speckle noise, and gathered with non-linear sampling. Rendering speed is too slow since we can not use additional data structures or procedures in rendering stage. In this paper, we use several visualization methods for fast rendering of ultrasound data. First method, denoted as adaptive ray sampling, is to reduce the number of samples by adjusting sampling interval in empty space. Secondly, we use early ray termination scheme with sufficiently wide sampling interval and low threshold value of opacity during color compositing. Lastly, we use bilinear interpolation instead of trilinear interpolation for sampling in transparent region. We conclude that our method reduces the rendering time without loss of image quality in comparison to the conventional methods.