• Title/Summary/Keyword: Sampling Frequency Offset

Search Result 77, Processing Time 0.023 seconds

Study of efficient sampling frequency offset estimation schemes for OFDM system (OFDM 시스템에서 효율적인 샘플링 주파수 옵셋 추정 기법에 관한 연구)

  • Wang, Do-Huy;Yoon, Eun-Chul;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.357-365
    • /
    • 2009
  • In an OFDM system, the sampling frequency offset between the transmitter and receiver is known to cause the inter-channel interference (ICI), resulting in performance degradation. Sampling frequency offset can be generally estimated by correlation of the pilot signal within contiguous OFDM symbol. In this paper, we propose sampling frequency offset estimation schemes using various mixture of consecutive symbols. We conduct a simulation in DVB-T(2K mode) system, which shows that the proposed schemes can improve the performance of sampling frequency offset estimation by decreasing noise effect within consecutive symbols in AWGN channel model.

Estimation Techniques for Sampling Frequency Offset in OFDM Systems (OFDM 시스템의 샘플링 주파수 옵셋 추정기법)

  • 전원기;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1795-1805
    • /
    • 1999
  • In an OFDM (Orthogonal Frequency-Division Multiplexing) system, the sampling frequency offset between the transmitter and receiver is known to cause the interchannel interference (ICI), resulting in performance degradation. In this paper, we propose two time-domain techniques to estimate the sampling frequency offset, especially for a high data-rate OFDM system. The first technique estimates the sampling frequency offset by using the phase difference between two received samples with a fixed amount of time interval, corresponding to the transmitted training symbol, under the assumption of perfect symbol and carrier offset synchronization. The second technique estimates the sampling frequency offset and carrier frequency offset jointly, when the two offsets exist together, by using two training symbols with different frequency components and using a sample algebraic calculation. The proposed estimation techniques for sampling frequency offset cause no time delay due to all time-domain processing, and have a good performance due to no ICI effect. The performances of the proposed techniques are demonstrated by various simulations.

  • PDF

Joint Estimation Schemes of Carrier and Sampling Frequency Offsets for MB-OFDM UWB Systems (MB-OFDM UWB 시스템을 위한 반송파 및 샘플링 주파수 오프셋 결합 추정 기법)

  • Cho, Chang-Hoon;Yang, Suck-Chel;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.965-975
    • /
    • 2005
  • In this paper, we propose and evaluate joint carrier and sampling frequency offset estimation schemes based on the channel estimation sequences in PLCP (Physical Layer Convergence Procedure) preamble for the proper and effcient synchronization of the MB-OFDM WB (Multi-Band Orthogonal Frequency Division Multiplexing Ultra Wide Band) systems which have recently drawn explosive attention for future W-PAN (Wireless Personal Area Network) applications. In the joint estimation schemes, we first estimate the sampling frequency offset, and then estimate the carrier frequency offset using the estimated sampling frequency offset. Moreover, to improve the reliability of the estimated offset values, each process uses a combination scheme based on weighting factors. Simulation results using IEEE 802.15 Task Group 3a UWB channel models reveal that the estimation scheme using the simple weighting factors based on easily-measurable received signal power of each sub-channel shows favorably comparable performance to the ideal scheme using the weighting factors based on the perfectly-estimated frequency response of the channel.

Phase Tracking for Orthogonal Frequency Division Multiplexing Systems (직교 주파수 분할 다중화 시스템을 위한 위상 오차 추적)

  • Jeon, Tae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.61-67
    • /
    • 2006
  • This paper proposes the algorithm for tracking of the residual phase errors incurred by carrier frequency offset and sampling frequency offset in the orthogonal frequency division multiplexing (OFDM) systems which are suitable for high data rate wireless communications. In the OFDM systems the subcarriers which are orthogonal to each other are modulated by digital data and transmitted simultaneously. The carrier frequency offset causes degradation of signal to noise ratio(SNR) performance and interference between the adjacent subcarriers. The errors in the sampling timing caused by the sampling frequency difference between the transmitter and the receiver sides also cause a major performance degradation in the OFDM systems. The residual error tracking and compensation mechanism is essential in the OFDM system since the carrier and the sampling frequency offset cause the loss of orthogonality resulting in the system performance loss. This paper proposes the scheme where the channel gain and the payload data information are reflected in the residual error tracking process which results in the reduction of the estimation error and the tracking performance improvements under the frequency selective fading wireless channels.

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

Robust Pilot-aided Frequency Offset Estimation Scheme for OFDM-based Broadcasting System with Cyclic Delay Diversity

  • Shin, Won-Jae;You, Young-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3055-3070
    • /
    • 2013
  • This paper proposes an improved carrier frequency offset (CFO) and sampling frequency offset (SFO) estimation scheme for orthogonal frequency division multiplexing (OFDM) based broadcasting system with cyclic delay diversity (CDD) antenna. By exploiting a periodic nature of channel transfer function, cyclic delay and pilot pattern with a maximum channel power are carefully chosen, which helps to enable a robust estimation of CFO and SFO against the frequency selectivity of the channel. As a performance measure, a closed-form expression for the achievable mean square error of the proposed scheme is derived and is verified through simulations using the parameters of the digital radio mondiale standard. The comparison results show that the proposed frequency estimator is shown to benefit from properly selected delay parameter and pilot pattern, with a performance better than the existing estimator.

A New Sampling Frequency Offset Estimation Algorithm Using a Single OFDM Symbol (단일 OFDM 심볼을 이용한 샘플링 주파수 옵셋 추정 기법)

  • Jung In-Jae;Kim Yong-Serk;Lee Kyu-Ha;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1004-1011
    • /
    • 2005
  • In OFDM (Orthogonal Frequency Division Multiplexing) system, sampling frequency offset causes performance degradation due to increase of ICI. Sampling frequency offset can be generally estimated by correlation of the pilot signal or the known pattern within two contiguous OFDM symbol however, this method has the throughput degradation and the difficulty in applying to various OFDM systems. In this paper, we propose a new algorithm for sampling frequency offset estimation which can solve aforementioned issues. The proposed algorithm uses a single OFDM symbol to prevent throughput degradation and to apply to various OFDM-based communication systems flexibly Also, the proposed algorithm can enhance reliability by observing more number of correlations compared to the established algorithm in frequency domain. Extensive computer simulation shows that the proposed algorithm can improve the system performance in various channel conditions.

Design and Fabrication of YTO Module for Wideband Frequency Synthesizer (광대역 주파수 합성기용 YTO 모듈 설계 및 제작)

  • Chae, Myeong-Ho;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1280-1287
    • /
    • 2012
  • The 3.2~6.5 GHz wideband YTO(YIG Tuned Oscillator) module is designed, fabricated and measured. To improve the phase noise characteristic of the YTO module, offset PLL(Phase Locked Loop) structure with sampling mixer is applied. This YTO module is composed of sampling mixer, phase detector, loop filter, current driver, and YTO. The phase noise of the fabricated YTO module is measured as -100 dBc/Hz at 10 kHz offset frequency, which approximates the predicted result at the center frequency of 4.5 GHz. This YTO module presents over 10 dB improved phase noise compared to conventional PLL module from operating frequency.

A MB-OFDM UWB Receive Design and Evaluation Using 4. Parallel Synchronization Architecture (4 병렬 동기 구조를 이용한 MB-OFDM UWB 수신기 설계 및 평가)

  • Shin Cheol-Ho;Choi Sangsung;Lee Hanho;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1075-1085
    • /
    • 2005
  • The purpose of this paper is to design the architecture for synchronization of MB-OFDM UWB system that is being processed the standardization for Alt-PHY of WPAN(Wireless Personal Area Network) at IEEE802.15.3a and to analyze the implementation loss due to 4 parallel synchronization architecture for design or link margin. First an overview of the MB-OFDM UWB system based on IEEE802.15.3a Alt-PHY standard is described. The effects of non-ideal transmission conditions of the MB-OFDM UWB system including carrier frequency offset and sampling clock offset are analyzed to design a full digital architecture for synchronization. The synchronization architecture using 4-parallel structure is then proposed to consider the VLSI implementation including algorithms for carrier frequency offset and sampling clock offset to minimize the effects of synchronization errors. The overall performance degradation due to the proposed synchronization architecture is simulated to be with maximum 3.08 dB of the ideal receiver in maximum carrier frequency offset and sampling clock offset tolerance fir MB-OFDM UWB system.

Timing Synchronization with Channel Impulse Response in OFDM Systems (채널 임펄스 응답을 이용한 OFDM 시스템 시간 동기)

  • Kang, Eun-Su;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.53-58
    • /
    • 2007
  • OFDM (orthogonal frequency division multiplexing) is an effective modulation technique for high speed transmission over fading channels. However, it has a high bit error rate in the receiver if there is an error on frame synchronization because of phase rotation. A coherent OFDM system has to acquire exact timing synchronization of fraction and integer sampling positions. When a sampling offset exist the performance of a receiver will be degraded severely. In this paper, we propose an algorithm that acquires the fractional sampling offset in OFDM systems. This scheme compares the channel impulse responses with the early and late sampled signals having 0.5 sample offset from the estimated sampling positions by correlation with the received and training samples. Its performance is verified by computer simulations in multipath channels.