• Title/Summary/Keyword: Saltwater intrusion

Search Result 55, Processing Time 0.033 seconds

Saltwater Intrusion Monitoring Evaluation through Automatic Vertical Line Method in a Costal Aquifer of the Eastern Part of Jeju Island (수직 라인 관측시스템을 이용한 제주 동부 해안대수층에서 해수침투 모니터링 평가)

  • Jang, Hojune;Ha, Kyoochul;Hwang, Inuk;Kim, Gee-Pyo;Park, Won-Bae
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Groundwater monitoring is commonly practiced with real-time sensors placed in several depth spots in aquifer. However, this method only provides monitoring data at the point where the sensors are installed. In this study, we developed a vertical line monitoring system (VLMS) that can provide continuous data of groundwater parameters along the vertical depth. The device was installed in a well located on the coast of the eastern part of Jeju island to monitor electrical conductivity, temperature, salinity, pH, dissolved oxygen, and oxidation-reduction potential over approximately 3 months from September 11 to December 3, 2020. The results indicated that the groundwater levels fluctuated with the tidal change of seawater level, and the upper and lower boundaries of the freshwater and saltwater zone in the groundwater were located at below 16 m and 36 m of mean sea level, respectively. There was a large variation in EC values during the high tide and temperature change was the greatest during flow tide. Although further investigation is needed for improvement of the device to obtain more accurate and reliable data, the device has a potential utility to provide fundamental data to understand the seawater intrusion and transport mechanisms in coastal aquifers.

Spatio-temporal Variation of Groundwater Level and Electrical Conductivity in Coastal Areas of Jeju Island

  • Lim, Woo-Ri;Park, Won-Bae;Lee, Chang-Han;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.539-556
    • /
    • 2022
  • In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 ㎲/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.

A Study on Analysis of Freshwater-saltwater Interface in the Aquifer around Hwajinpo Lagoon on the Eastern Coast of Korea (동해안 화진포 석호 주변 대수층 내 담수-염수 경계면 분석에 관한 연구)

  • Kim, Minji;Kim, Dongjin;Jun, Seong-Chun;Lee, Jeonghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.699-707
    • /
    • 2021
  • Hwajinpo Lagoon, located on the eastern coast of Korea, is a unique environment where freshwater and saltwater are mixed. Systematic management of the lagoon is required because it is a biodiversity-rich and area of high conservation value. The existing environment of the lagoon was evaluated by identifying the distribution of the groundwater level and groundwater flow characteristics. In addition, hydrogeochemical fluctuations were analyzed to determine the effect of seawater intrusion into the aquifer. The results demonstrate that the freshwater-saltwater interface is distributed throughout the aquifer and rises when water of the lagoon evaporates due to prolonged periods of low rainfall and high temperature, thereby increasing the possibility of seawater inflow through groundwater. As for the ionic delta properties (difference between the measured and theoretical concentration of mixed waters), it was estimated that the cation-exchange and precipitation reactions occurred in the aquifer due to seawater intrusion. The ratio of seawater mixed at each point was calculated, using oxygen isotopes and chloride as tracers, resulting in an average of 0.3 and a maximum of 0.87. The overall seawater mixing ratio appears to be distributed according to the distance from the coast. However, some of the results were deviated from the theoretical expectations and reflected the characteristics of the nearby aquifers. Further research on seasonal changes and simulation of seawater intrusion mechanisms is required for specific analysis.

3D Numerical Modelling of Water Flow and Salinity Intrusion in the Vietnamese Mekong Delta

  • Lee, Taeyoon;Nguyen, Van Thinh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.207-207
    • /
    • 2021
  • The Vietnamese Mekong Delta(VMD) covers an area of 62,250 km2 in the lowest basin of the Mekong Delta where more than half of the country's total rice production takes place. In 2016, an estimated 1.29 million tonnes of Vietnam's rice were lost to the country's biggest drought in 90 year and particularly in VMD, at least 221,000 hectares of rice paddies were hit by the drought and related saltwater intrusion from the South China Sea. In this study, 3D numerical simulations using Delft3D hydrodynamic models with calibration and validation process were performed to examine flow characteristics, climate change scenarios, water level changes, and salinity concentrations in the nine major estuaries and coastal zones of VMD during the 21st century. The river flows and their interactions with ocean currents were modeled by Delft3D and since the water levels and saltwater intrusion in the area are sensitive to the climate conditions and upstream dam operations, the hydrodynamic models considered discharges from the dams and climate data provided by the Coupled Model Intercomparison Project Phase 6(CMIP6). The models were calibrated and verified using observational water levels, salinity distribution, and climate change data and scenarios. The results agreed well with the observed data during calibration and validation periods. The calibrated models will be used to make predictions about the future salinity intrusion events, focusing on the impacts of sea level rise due to global warming and weather elements.

  • PDF

Impact of predicted climate change on groundwater resources of small islands : Case study of a small Pacific Island

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.145-145
    • /
    • 2018
  • Small islands rely heavily on groundwater resources in addition to rainwater as the source of freshwater since surface water bodies are often absent. The groundwater resources are vulnerable to sea level rise, coastal flooding, saltwater intrusion, irregular pattern of precipitation resulting in long droughts and flash floods. Increase in population increases the demand for the limited groundwater resources, thus aggravating the problem. In this study, the effects of climate change on Tongatapu Island, Kingdom of Tonga, a small island in Pacific Ocean, are investigated using a sharp interface transient groundwater flow model. Twenty nine downscaled General Circulation Model(GCM) predictions are input to a water balance model to estimate the groundwater recharge. The temporal variation in recharge is predicted over the period of 2010 to 2099. A set of GCM models are selected to represent the ensemble of 29 models based on cumulative recharge at the end of the century. This set of GCM model predictions are then used to simulate a total of six climate scenarios, three each (2010-2039, 2040-2069, and 2070-2099) under RCP 4.5 and RCP 8.5. The impacts of predicted climate change on groundwater resources is evaluated in terms of freshwater volume changes and saltwater ratios in pumping wells compared to present conditions. Though the cumulative recharge at the end of the century indicates a wetter climate compared to the present conditions the large variability in rainfall pattern results in frequent periods of groundwater drought leading to saltwater intrusion in pumping wells. Thus for sustaining the limited groundwater resources in small islands, implementation of timely assessment and management practices are of utmost importance.

  • PDF

Development of a Visual-Basic based Two-Dimensional Finite-Difference Density-Coupled Flow Numerical Code for Simulating Saltwater Intrusion (해수침투 모의를 위한 Visual Basic 기반 2차원 유한차분 밀도 결합 흐름 모델 개발)

  • Chang, Sun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.973-980
    • /
    • 2017
  • The purpose of this study is to develop VDFT (Visual Basic based Density-coupled Flow and Transport), a numerical modeling code used to simulate density coupled flow equations used to simulate seawater intrusion in a two dimensional finite difference method. The VDFT code has the advantage of being intuitive and simple to use and has the advantage of utilizing the EXCEL Visual Basic platform, which is widely used for general business purposes. Generally, code developed for numerical simulation can be verified through representative example models called benchmark problem. In this study, we verified the VDFT code using benchmark problem called Henry Problem and Modified Henry Problem as well as two laboratory test data. The results of this study are analyzed the importance of each benchmark problems, validated VDFT code compared to those problems. In conclusion, the possibility of using VDFT code is diagnosed and the direction of future research is suggested.

Analysis Saltwater Intrusion using 2-D & 3-D Numerical Model in Seomjin River Estuary (2차원 및 3차원 수치모형을 이용한 섬진강 하구부 염수침입 분석)

  • Jung, Sung-Tae;Noh, Joon-Woo;Hur, Young-Teck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.785-790
    • /
    • 2009
  • 섬진강 하구역에서 모래채취로 인한 지형변화와, 댐 및 취수장의 증가로 인한 유량감소로 인해 해수의 역류범위가 증가하여 참게나 재첩과 같은 경제성 어종이 감소하고, 염분으로 인한 농업용수사용 불가와 같은 염수피해가 늘어가고 있다. 따라서 본 연구에서는 2차원 수치모형인 RMA-2, 4와 3차원 수치모형인 EFDC를 각각 이용하여 밀물 시 염수가 전파되는 범위 및 염수농도를 모의하고, 동시에 2차원 모형과 3차원 모형을 비교하여 모의목적에 대한 각 모형의 장 단점을 알아보았다. 모의결과를 살펴보면 최저 수위 시 두 모형이 큰 차이를 보이는 것을 볼 수 있었으며, EFDC가 상류쪽으로 더 길게 염수침입이 일어나는 것을 볼 수 있었다.

  • PDF

Analysis Saltwater Intrusion by Flushing Discharge in Seomjin River Estuary (섬진강 flushing 방류로 인한 하구부 염수침입 영향분석)

  • Noh, Jun-Woo;Lee, Jin-Young;Kang, Shin-Wook;Lee, Sang-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.982-985
    • /
    • 2010
  • 섬진강 하구는 남해안 중부에 위치해 있으며, 하구둑이 건조되어 있지 않아 하구역 일대와 광양만이 하나의 넓은 기수역을 형성하고 있다. 또한 섬진강 하구는 상류에 섬진강댐, 주암댐 등이 건설되고 취수량이 증가하면서 하구로 유입되는 수량이 감소해 기수역이 상류로 확대된 것으로 보고되고 있다. 2008년 주암댐에서는 갈수기 때마다 대두되는 수질악화 및 염수침입을 방지하고자 3/10~3/24일에 걸쳐 1차, 4/23~5/7에 걸쳐 2차로 나누어 flushing 방류를 실시하였다. 이에 본 연구에서는 실측된 염분 자료를 토대로 3차원 수리 및 수질해석이 가능한 EFDC 모형을 활용하여 flushing 방류를 실시한 경우와 하지 않았을 경우에 대하여 모의를 수행함으로써 flushing 방류 유무에 따른 하구의 염수침입 및 염해피해 방지 효과에 대해 분석하였다.

  • PDF

Analysis of Saltwater Intrusion by Flushing Discharge in the Seomjin River Estuary (Flushing 방류로 인한 섬진강 하구부 염수침입 영향분석)

  • Noh, Joonwoo;Lee, Jin-Young;Shin, Jae-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2011
  • Estuary is a transitional zone between river and ocean environment that receives the maritime and riverine influence simultaneously. Estuaries are the most productive habitats because their incoming water provides large quantities of nutrients. The Seomjin River estuary, located in the middle south of Korea, has no barrage and shows natural characteristic of estuary. However, due to dredging and reclamation the environment of the estuary has been changed significantly in the river mouth. In addition, increased freshwater intake in midstream of the Seomjin River results in salinity intrusion. In this paper salinity variation in downstream estuary of the Seomjin River has been simulated and tested using EFDC model. The results of simulation were compared with measured data collected at three points, Culture & Art Center, Sumjin Iron Bridge, and Mokdori, located at 9Km, 14Km, and 15.5Km respectively from downstream estuary. Based on the simulated results, the contribution of the flushing discharge has been evaluated in preventing the salinity intrusion by increasing the discharge flowrates released from the Juam dam.

Optimal Groundwater Management Model for Coastal Regions Using Parallel Genetic Algorithm

  • Park, Nam Sik;Hong, Sung Hun;Shim, Myung Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.77-89
    • /
    • 2004
  • A computer model is developed to assess optimal ground water pumping rates and optimal locations of wells in a coastal region. A sharp interface model is used to simulate the freshwater and salt water flows. Drawdown, upconing, saltwater intrusion and the contamination of well are considered in this model. A genetic algorithm with parallel processing is used to identify the optimal solution.

  • PDF