• Title/Summary/Keyword: Saltwater

Search Result 115, Processing Time 0.028 seconds

Impacts of Fresh and Saline Groundwater Development in Sungsan Watershed, Jeju Island (제주도 성산유역의 담수와 염수 지하수 개발의 영향)

  • Park, Namsik;Koh, Byoung-Ryoun;Lim, Youngduck
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.783-794
    • /
    • 2013
  • Saline groundwater, in addition to fresh groundwater, is actively developed for inland aqua culture in Jeju Island where groundwater is practically the only source of freshwater. In this work we analyzed impacts of saline and fresh groundwater development on groundwater systems in Sungsan subwatershed in Jeju. A sharp-interface model was used to simulate fresh and saline groundwater flows. Withdrawal of freshwater imparted adverse impacts by lowering groundwater level and inducing saltwater encroachment. Withdrawal of saline water imparted mixed results: on one hand it lowered groundwater level, on the other hand it reduced saltwater encroachments. However, freshwater development lowered groundwater level much more than salinewater development did. Modified Ghyben-Herzberg ratio was developed for a transition zone with finite width. Comparison against observed data resulted in fair agreement.

Impact of predicted climate change on groundwater resources of small islands : Case study of a small Pacific Island

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.145-145
    • /
    • 2018
  • Small islands rely heavily on groundwater resources in addition to rainwater as the source of freshwater since surface water bodies are often absent. The groundwater resources are vulnerable to sea level rise, coastal flooding, saltwater intrusion, irregular pattern of precipitation resulting in long droughts and flash floods. Increase in population increases the demand for the limited groundwater resources, thus aggravating the problem. In this study, the effects of climate change on Tongatapu Island, Kingdom of Tonga, a small island in Pacific Ocean, are investigated using a sharp interface transient groundwater flow model. Twenty nine downscaled General Circulation Model(GCM) predictions are input to a water balance model to estimate the groundwater recharge. The temporal variation in recharge is predicted over the period of 2010 to 2099. A set of GCM models are selected to represent the ensemble of 29 models based on cumulative recharge at the end of the century. This set of GCM model predictions are then used to simulate a total of six climate scenarios, three each (2010-2039, 2040-2069, and 2070-2099) under RCP 4.5 and RCP 8.5. The impacts of predicted climate change on groundwater resources is evaluated in terms of freshwater volume changes and saltwater ratios in pumping wells compared to present conditions. Though the cumulative recharge at the end of the century indicates a wetter climate compared to the present conditions the large variability in rainfall pattern results in frequent periods of groundwater drought leading to saltwater intrusion in pumping wells. Thus for sustaining the limited groundwater resources in small islands, implementation of timely assessment and management practices are of utmost importance.

  • PDF

Saltwater Intrusion Monitoring Evaluation through Automatic Vertical Line Method in a Costal Aquifer of the Eastern Part of Jeju Island (수직 라인 관측시스템을 이용한 제주 동부 해안대수층에서 해수침투 모니터링 평가)

  • Jang, Hojune;Ha, Kyoochul;Hwang, Inuk;Kim, Gee-Pyo;Park, Won-Bae
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Groundwater monitoring is commonly practiced with real-time sensors placed in several depth spots in aquifer. However, this method only provides monitoring data at the point where the sensors are installed. In this study, we developed a vertical line monitoring system (VLMS) that can provide continuous data of groundwater parameters along the vertical depth. The device was installed in a well located on the coast of the eastern part of Jeju island to monitor electrical conductivity, temperature, salinity, pH, dissolved oxygen, and oxidation-reduction potential over approximately 3 months from September 11 to December 3, 2020. The results indicated that the groundwater levels fluctuated with the tidal change of seawater level, and the upper and lower boundaries of the freshwater and saltwater zone in the groundwater were located at below 16 m and 36 m of mean sea level, respectively. There was a large variation in EC values during the high tide and temperature change was the greatest during flow tide. Although further investigation is needed for improvement of the device to obtain more accurate and reliable data, the device has a potential utility to provide fundamental data to understand the seawater intrusion and transport mechanisms in coastal aquifers.

Spatio-temporal Variation of Groundwater Level and Electrical Conductivity in Coastal Areas of Jeju Island

  • Lim, Woo-Ri;Park, Won-Bae;Lee, Chang-Han;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.539-556
    • /
    • 2022
  • In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 ㎲/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.

Validation of Fresh-Saltwater Sharp-Interface Model Using Freshwater Lens Hydraulic Experiment (담수렌즈 수리모형을 이용한 담수-염수 경계면 수치모델의 검정)

  • Hong, Sung Hun;Park, Namsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.263-269
    • /
    • 2006
  • An optimization model was developed for groundwater development and management in coastal areas. The optimization model consists of coastal groundwater flow model and optimization techniques. The objective of this work is to validate sharp-interface model which is one of major components of the optimization model. A laboratory experimental model is built to simulate freshwater lens, i.e., layer of freshwater floating on top of saltwater, phenomena. Experimental results for the position of fresh-saltwater sharp-interface and the salinity in well are compared with numerical results. Average ratio of relative error is estimated approximately between 2.91% and 4.39%. And the numerical results are in good agreement with the laboratory results of water quality in well in addition to the position of sharp-interface. Accordingly the evaluation of coastal groundwater flow using sharp-interface model can produce reasonable results.

A Study on Analysis of Freshwater-saltwater Interface in the Aquifer around Hwajinpo Lagoon on the Eastern Coast of Korea (동해안 화진포 석호 주변 대수층 내 담수-염수 경계면 분석에 관한 연구)

  • Kim, Minji;Kim, Dongjin;Jun, Seong-Chun;Lee, Jeonghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.699-707
    • /
    • 2021
  • Hwajinpo Lagoon, located on the eastern coast of Korea, is a unique environment where freshwater and saltwater are mixed. Systematic management of the lagoon is required because it is a biodiversity-rich and area of high conservation value. The existing environment of the lagoon was evaluated by identifying the distribution of the groundwater level and groundwater flow characteristics. In addition, hydrogeochemical fluctuations were analyzed to determine the effect of seawater intrusion into the aquifer. The results demonstrate that the freshwater-saltwater interface is distributed throughout the aquifer and rises when water of the lagoon evaporates due to prolonged periods of low rainfall and high temperature, thereby increasing the possibility of seawater inflow through groundwater. As for the ionic delta properties (difference between the measured and theoretical concentration of mixed waters), it was estimated that the cation-exchange and precipitation reactions occurred in the aquifer due to seawater intrusion. The ratio of seawater mixed at each point was calculated, using oxygen isotopes and chloride as tracers, resulting in an average of 0.3 and a maximum of 0.87. The overall seawater mixing ratio appears to be distributed according to the distance from the coast. However, some of the results were deviated from the theoretical expectations and reflected the characteristics of the nearby aquifers. Further research on seasonal changes and simulation of seawater intrusion mechanisms is required for specific analysis.

Numerical Simulation of Salinity Intrusion into Groundwater Near Estuary Barrage with Using OpenGeoSys (OpenGeoSys를 이용한 하굿둑 인근 지하수 내 염분 침투 수치모의)

  • Hyun Jung Lee;Seung Oh Lee;Seung Jin Maeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.157-164
    • /
    • 2023
  • The estuary dam is a structure installed and operated in a closed state except when flood event occurs to prevent inland saltwater intrusion and secure freshwater supply. However, the closed state of dam leads to issues such as eutrophication, so it is necessary to examine the extent of saltwater intrusion resulting from the opening of sluice gates. Groundwater, due to its subsurface conditions and slow flow characteristics, is widely analyzed using numerical models. OpenGeoSys, an open-source software capable of simulating Thermal- Hydraulic- Mechanical- Chemical phenomena, was adopted for this study. Simulations were conducted assuming natural flow conditions without dam and operating considering busy farming season, mostly from March to September. Verification of the model through analytical solutions showed error of 3.7%, confirming that OpenGeoSys is capable of simulating saltwater intrusion for these cases. From results simulated for 10 years, considering for the busy farming season, resulted in about 46% reduction in saltwater intrusion length compared to natural flow conditions, approximately 74.36 m. It may be helpful to make choices to use groundwater as a water resource.

Determination of an Underground Seawater Flow Using a TEM Decay Curve (TEM감쇠곡선을 이용한 해수의 지하 유동현상 파악)

  • 황학수;문창규;이상규;이태섭
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.499-506
    • /
    • 2001
  • The geophysical monitoring technique using the high resolution time-domain electromagnetic (TEM) method with a coincident loop away was applied for determination of an underground seawater flow in the coastal areas. In comparison of the TEM monitoring to direct current (DC) resistivity monitoring, the TEM response to the under ground seawater flow is less sensitive than the DC resistivity response. However, the TEM monitoring is more effective in terms of measuring time, survey expense, and real-time data processing than the DC monitoring thor evaluating the spatial distribution of the fresh water-seawater transition zone in a regional area.

  • PDF

Quantitative Analysis for the Effects of Hydraulic Variables on the Formation of Freshwater-Saltwater Transition Zones in Aquifers (수리 변수들이 대수층 내의 담수 해수 - 확산대의 형성에 미치는 영향에 대한 정량적 분석)

  • 박남식
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 1995
  • The location and the shape of freshwater-saltwater transition zones in coastal aquifers are affected by many hydraulic variables. To date most work to determine the effects of these variables are limited to qualitative comparison of transition zones. In this work characteristics of transition zones (maximum intrusion length, thickness, and degree of stratification) are quantified, and effects of principal hydraulic variables(velocity and dispersivity) on these characteristics are studied using a numerical model. Dimensional analysis is used to assemble entire model results. Effects of velocity and dispersivity are seen clearly. From this study, increase in velocity is found to cause shrinkage of transition zones. This observation contradicts claims by some that, because dispersion is proportional to velocity, increase in velocity would cause expansion of transition zones.

  • PDF

Comparison of a Groundwater Simulation-Optimization Numerical Model with the Analytical Solutions (해안지하수개발 최적화수치모델과 해석해의 비교연구)

  • Shi, Lei;Cui, Lei;Lee, Chan-Jong;Park, Nam-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.905-908
    • /
    • 2009
  • In the management of groundwater in coastal areas, saltwater intrusion associated with extensive groundwater pumping, is an important problem. The groundwater optimization model is an advanced method to study the aquifer and decide the optimal pumping rates or optimal well locations. Cheng and Park gave the analytical solutions to the optimization problems basing on Strack's analytical solution. However, the analytical solutions have some limitations of the property of aquifer, boundary conditions, and so on. A simulation-optimization numerical method presented in this study can deal with non-homogenous aquifers and various complex boundary conditions. This simulation-optimization model includes the sharp interface solution which solves the same governing equation with Strack's analytical solution, therefore, the freshwater head and saltwater thickness should be in the same conditions, that can lead to the comparable results in optimal pumping rates and optimal well locations for both of the solutions. It is noticed that the analytical solutions can only be applied on the infinite domain aquifer, while it is impossible to get a numerical model with infinite domain. To compare the numerical model with the analytical solutions, calculation of the equivalent boundary flux was planted into the numerical model so that the numerical model can have the same conditions in steady state with analytical solutions.

  • PDF