• Title/Summary/Keyword: Saltern

Search Result 24, Processing Time 0.018 seconds

Characterization of Pigment-Producing Pseudoalteromonas spp. from Marine Habitats and Their Optimal Conditions for Pigment Production (해양환경에서 분리한 Pseudoalteromonas 속 균주들의 특징 및 색소 생성 최적 조건)

  • Jeong, Dong-Woo;Park, Jin-Sook
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1752-1757
    • /
    • 2008
  • Three marine bacteria producing pigments were isolated from seawater of Jeju-Do and local solar saltern in Korea. Based on phenotypic characteristics and 16S rRNA sequence analysis, the strains were identified as Pseudoalteromonas spp., which produced red (Ju11-1), yellow (Ju14), and orange (TA20) pigments. The pigments showed UV absorption maxima at 537, 378 and 387 nm, respectively. The strains were growing well on Marine broth 2216 culture medium. The productivity of pigments reached the maximum value after 28 hours (Ju11-1, Ju14) and 24 hours (TA20) at $30^{\circ}C$, 2% NaCl and pH 6-7. The best pigment production of strains were supported by 1% of lactose (Ju11-1) and maltose (Ju14, TA20) as a carbon source and 1% of beef extract as a nitrogen source.

A Satellite Imagery-Based Survey of Reclaimed Land in South Pyongan Province, North Korea (위성영상을 활용한 북한 평안남도 간척지 실태조사)

  • Cho, Jung-Ho;Kim, Hyuk;Nam, Won-Ho;Kim, Kwan-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.79-91
    • /
    • 2023
  • This study surveyed the actual status of reclamation areas in South Pyongan Province, North Korea, using satellite images and literature to survey the creation date, area, and length of the embankment of the reclamation areas. The reclamation areas in South Pyongan Province were created in three stages, with the first stage completed in the late 1970s or early 1980s, the second stage in the late 1980s or early 1990s, and the third stage in the 2000s. The total area of the reclamation areas is 105,570 hectares. The land cover of the reclamation areas is as follows: agriculture (50.5%), saltern (29.5%), water bodies (13.6%), foreshore (12.4%), grasslands (3.0%), bare land (0.4%), facility (0.1%), and forests (0.1%). The study also found that the NDVI values of the reclamation areas vary depending on the location. The NDVI values of the Gwiseong and Namyang reclamation areas are low, while the NDVI values of the Samcheonpo and Jigdongbaedali reclamation areas are high. The study found that the NDVI values of the reclamation areas are correlated with the land cover of the reclamation areas. The study's findings can be used to understand the development direction and regional characteristics of the reclamation areas in South Pyongan Province. The study's findings can also be used to develop policies and plans for the sustainable development and utilization of the reclamation areas in South Pyongan Province.

Removal of Harmful Impurities Including Microplastics in Sun-Dried Sea Salt by Membrane Technology (분리막을 이용한 천일염내 불순물 및 미세플라스틱 제거에 관한 연구)

  • Lim, Si-Woo;Seo, Chae-Hee;Hong, Seung-Kwan;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.314-324
    • /
    • 2022
  • This study is aimed to design a membrane process that systematically removes contaminants including microplastics in sun-dried salt using a separation membrane. In this study, we selected the separation membrane material, pore size, and module suitable for the sun-dried salt fields, and proceeded with the experiments under the salt fields and laboratory conditions. A pilot plant was constructed and tested in our lab and in the actual saltern with the selected 200 kDa, 4 kDa ultrafiltration membranes, and 3 kDa nanofiltration membranes. Most of the impurities in the sea salt were 0.1 ㎛ in size, and more than 7 types of various microplastics were detected in the impurities. After that, as a result of checking the filtered water through the separation membrane process, no impurities were detected. As a result of comparing the existing sea salt component and the sea salt component prepared with separation membrane filtrate, impurities were effectively removed without change in the sea salt component.

Effect of Halophilic Bacterium, Haloarcula vallismortis, Extract on UV-induced Skin Change (호염 미생물(Haloarcula vallismortis) 용해물의 자외선유발 피부변화에 대한 효과)

  • Kim, Ji Hyung;Shin, Jae Young;Hwang, Seung Jin;Kim, Yun Sun;Kim, Yoo Mi;Gil, So Yeon;Jin, Mu Hyun;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.341-350
    • /
    • 2015
  • Skin carrys out protective role against harmful outer environment assaults including ultraviolet radiation, heavy metals and oxides. Especially, ultraviolet-B (UVB) light causes inflammatory reactions in skin such as sun burn and erythma and stimulates melanin pigmentation. Furthermore, the influx of UVB into skin cells causes DNA damage in keratinocytes and dermal fibroblasts, inhibition of extracellular matrix (ECM) synthesis which leads to a decrease in elasticity of skin and wrinkle formation. It also damages dermal connective tissue and disrupts the skin barrier function. Prolonged exposure of human skin to UVB light is well known to trigger severe skin lesions such as cell death and carcinogenesis. Haloarcula vallismortis is a halophilic microorganism isolated from the Dead Sea, Its growth characteristics have not been studied in detail yet. It generally grows at salinity more than 10%, but the actual growth salinity usually ranges between 20 to 25%. Because H. vallismortis is found mainly in saltern or salt lakes, there could exist defense mechanisms against strong sunlight. One of them is generation of additional ATP using halorhodopsin which absorbs photons and produces energy by potential difference formed by opening the chloride ion channel. It often shows a color of pink or red because of their high content of carotenoid pigments and it is considered to act as a defense mechanism against intense UV irradiation. In this study, the anti-inflammatory effect of the halophilic microorganism, H. vallismortis, extract was investigated. It was found that H. vallismortis extract had protective effect on DNA damage induced by UV irradiation. These results suggest that the extract of halophilic bacterium, H. vallismortis could be used as a bio-sunscreen or natural sunscreen which ameliorate the harmful effects of UV light with its anti-inflammatory and DNA protective properties.