• Title/Summary/Keyword: Salt water

Search Result 2,115, Processing Time 0.03 seconds

Impact of Salt Intake on Red and Fallow Deer Production in Australia - Review -

  • Ru, Y.J.;Glatz, P.C.;Miao, Z.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1779-1787
    • /
    • 2000
  • Southern and south-western Australia is a typical mediterranean environment, characterised by wet, cold winters and dry, hot summers. The evaporation rate varies significantly in summer, resulting in a high salinity of drinking water for grazing animals. In addition, a large amount of land in the cropping areas is affected by salt. Puccinellia, tall wheat grass and saltbushes have been planted to improve the soil condition and to supply feed for grazing animals. Animals grazing these areas often ingest an excessive amount of salt from soil, forage and drinking water which can reduce feed intake, increase the water requirement, depress growth and affect body composition as demonstrated in sheep. While the deer industry has been successfully developed in these regions, the potential impact of excessive salt intake on deer production is unknown. The salt tolerance has been well defined for sheep, cattle and other livestock species, but the variation between animal species, breeds within species, maturity status and grazing environments makes it impossible to apply these values directly to deer. To optimise deer production and effectively use natural resources, it is essential to understand the salt status of grazing deer and the impact of excessive salt intake on growth and reproduction of deer.

Salt Injury and Overcoming Strategy of Rice (수도의 염해와 대책)

  • 이승택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.66-80
    • /
    • 1989
  • Salt injury in rice is caused mainly by the salinity in soil and in the irrigated water, and occasionaly by salinity delivered through typhoon from the sea. The salt concentration of rice plants increased with higher salinity in the soil of the rice growing. The climatic conditions, high temperature and solar radiation and dry conditions promote the salt absorption of rice plant in saline soil. The higher salt accumulation in the rice plant generally reduces the root activity and inhibits the absorption of minerals of rice plant, resulting the reduction of photosynthesis. The salt damages of rice plant, however, are different from different growth stage of rice plants as follows: 1. Germination of rice seed was slightly delayed up to 1.0% of salt concentration and remarkably at 1. 5%, but none of rice seeds were germinated at 2.5%. This may be due to the delayed water uptake of rice seeds and the inhibition of enzyme activity, 2. It was enable to establish rice seedlings at seed bed by 0.2% of salt concentration with some reduction of leaf elongation. The increasing of 0.3% salt concentration caused to the seedling death with varietal differences, but most of seedlings were death at 0.4% with no varietal differences. 3. Seedlings grown at the nursery over 0.1% salt, gradually reduced in rooting activity after transplanting according to increasing the salt concentration from 0.1% up to 0.3% of paddy field. However, the seedlings grown in normal seed bed showed no difference in rooting between varieties up to 0.1% but significantly different at 0.3% between varieties, but greatly reduced at 0.5% and died at last in paddy after transplanting. 4. At panicle initiation stage, rice plant delayed in heading by salt damage, at meiotic stage reduced in grains and its filling rate due to inhibition of glume and pollen developing, and salt damage at heading stage and till 3 weeks after heading caused to reduction of fertilization and ripening rate. In viewpoint of agricultural policy the overcoming strategy for salt injury is to secure sufficient water source. Irrigation and drainage systems as well as underground drainage is necessary to desalinize more effectively. This must be the most effective and positive way except cost. By cultural practice, growing the salt tolerant variety with high population could increase yield. The intermittent irrigation and fresh water flooding especially at transplanting and from panicle initiation to heading stage, the most sensitive to salt injury, is important to reduce the salt content in saline soil. During the off-cropping season, plough and rotavation with flooding followed by drainage, or submersion and drainage with groove could improve the desalinization. Increase of nitrogen fertilizer with more split application, and soil improvement by lime, organic matter and forign soil addition, could increase the rice yield. Shift of trans-planting is one of the way to escape from the salt injury.

  • PDF

Can Non-aqueous Solvent Desalinate?: Suggestion of the Screening Protocol for Selection of Potential Solvents (비수용성 용매를 이용한 탈염화 가능한가?: 적용 가능한 용매선정 기법 제안)

  • Choi, Oh Kyung;Seo, Jun Ho;Kim, Gyeong Soo;Kim, Dooil;Lee, Jae Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.48-54
    • /
    • 2020
  • This paper presents a screening protocol for the selection of solvents available for the solvent extraction desalination process. The desalination solvents hypothetically and theoretically require the capability of (1) Forming hydrogen bonds with water, (2) Absorbing some water molecules into its non-polar solvent layer, (3) Changing solubility for water-solvent separation, and (4) Rejecting salt ions during absorption. Similar to carboxylic acids, amine solvents are solvent chemicals applicable for desalination. The key parameter for selecting the potential solvent was the octanol-water partitioning coefficient (Kow) of which preferable value for desalination was in the range of 1-3. Six of the 30 amine solvents can absorb water and have a variable, i.e., temperature swing solubility with water molecule for water-solvent separation. Also, the hydrogen bonding interaction between solvent and water must be stronger than the ion-dipole interaction between water and salt, which means that the salt ions must be broken from the water and only water molecules absorbed for the desalination. In the final step, three solvents were selected as desalination solvents to remove salt ions and recover water. The water recovery of these three solvents were 15.4 %, 2.8 %, 10.5 %, and salt rejection were 76 %, 98 %, 95 %, respectively. This study suggests a new screening protocol comprising the theoretical and experimental approaches for the selection of solvents for the desalination method which is a new and challenges the desalination process in the future.

Hypochlorite treatment of polyamide membrane for improved reverse osmosis performance

  • Shao, P.;Kurth, C.J.
    • Membrane and Water Treatment
    • /
    • v.4 no.1
    • /
    • pp.69-81
    • /
    • 2013
  • The pH-dependent inter-conversion of the three free chlorine species ($Cl_2$, HOCl, OCl-) present in the aqueous hypochlorite solution was theoretically investigated. Each species was found overwhelmingly present in a characteristic pH range. Hypochlorite treatment of the polyamide membrane was carried out over these pH ranges and various membrane responses were observed. As pH is less than 8, membrane tends to be N-chlorinated by $Cl_2$ and HOCl, and N-chlorinated membrane showed reduced water permeance and salt rejection. As pH rises to 10-12, $OCl^-$ appears to be the dominating chlorine species. Membrane hydrolysis was found to well interpret the improved water permeance and salt rejection. When the pH is between 8-10, both N-chlorination and hydrolysis contribute to the response of the membrane, and the treated membrane showed improved salt rejection but reduced water permeation. Excessive hydrolysis occurred while the membrane was treated at pH 13 for the much stronger alkalinity.

The Electrical Salt-Fog Performance of Si1icone Rubber Material Aged by Water Immersion (수분침투로 열화된 실리콘 고무의 젼기적 염해 특성)

  • 연복회;이상엽;황명근;김완태;허창수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.25-28
    • /
    • 1998
  • In this study, we investigated the electrical characteristics of silicone rubber that being used outdoor insulating material, which had been immersed in salt water. After immersed the sample in salt water, we measured surface hydrophobicity, weight loss and microscopic surface appearance, and then compared with these of the original. And we tested the electrical characteristics of the aged sample by the water under salt-fog. These electrical characteristics are described by the average of leakage current, peak pulse number, which are recorded by data acquisition system The experimental results show that the resistance against tracking and erosion is decreased significantly by water penetration.

  • PDF

The Mineral Contents of Chicken Stock according to Salt Contents - Using a High-Pressure Extraction Cooking - (소금 첨가량에 따른 닭 육수의 무기질 함량 특성 - 고압 가열 추출 방식 이용 -)

  • Kim, Dong-Seok;Kim, Jong-Seck;Choi, Soo-Keun
    • Culinary science and hospitality research
    • /
    • v.14 no.4
    • /
    • pp.283-291
    • /
    • 2008
  • The present study is purposed to suggest accurate guidelines for developing standardized chicken meat stock containing salt, and to develop a product for mass production of uniform quality achieved by applying High Pressure Extraction Cooking(HPEC) using a high.pressure extractor. Through this study, we examined water contents, ash contents, salinity, turbidity and mineral contents of chicken meat stock according to the addition of salt. The ash contents increased with the increase of the addition of salt, but the water contents decreased with the increase of the addition of salt. Salinity increased with the increase of the addition of salt. Turbidity decreased with the increase of the addition of salt, and difference in turbidity according to the addition of salt was regular. Among mineral contents, Na showed the highest content, which was believed to be because of the addition of salt, and it was followed by K and P. The results of this study show that the mineral contents in the stock were different according to the addition of salt, but they were neither proportional to the addition of salt nor showed a regular pattern.

  • PDF

Investigation on Dissolution and Removal of Adhered LiCl-KCl-UCl3 Salt From Electrodeposited Uranium Dendrites using Deionized Water, Methanol, and Ethanol

  • Killinger, Dimitris Payton;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.549-562
    • /
    • 2020
  • Deionized water, methanol, and ethanol were investigated for their effectiveness at dissolving LiCl-KCl-UCl3 at 25, 35, and 50℃ using inductively coupled plasma mass spectrometry (ICP-MS) to study the concentration evolution of uranium and mass ratio evolutions of lithium and potassium in these solvents. A visualization experiment of the dissolution of the ternary salt in solvents was performed at 25℃ for 2 min to gain further understanding of the reactions. Aforementioned solvents were evaluated for their performance on removing the adhered ternary salt from uranium dendrites that were electrochemically separated in a molten LiCl-KCl-UCl3 electrolyte (500℃) using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Findings indicate that deionized water is best suited for dissolving the ternary salt and removing adhered salt from electrodeposits. The maximum uranium concentrations detected in deionized water, methanol, and ethanol for the different temperature conditions were 8.33, 5.67, 2.79 μg·L-1 for 25℃, 10.62, 5.73, 2.50 μg·L-1 for 35℃, and 11.55, 6.75, and 4.73 μg·L-1 for 50℃. ICP-MS analysis indicates that ethanol did not take up any KCl during dissolutions investigated. SEM-EDS analysis of ethanol washed uranium dendrites confirmed that KCl was still adhered to the surface. Saturation criteria is also proposed and utilized to approximate the state of saturation of the solvents used in the dissolution trials.

Optimization for Pretreatment Condition according to Salt Concentration and Soaking Time in the Preparation of Perilla Jangachi (소금 농도와 삭힘 시간에 따른 깻잎 장아찌의 전처리 조건의 최적화)

  • Lee, Hye-Ran;Nam, Sang-Min;Lee, Jong-Mee
    • Journal of the Korean Society of Food Culture
    • /
    • v.17 no.1
    • /
    • pp.70-77
    • /
    • 2002
  • Jangachi(salted and fermented vegetable) has been made by Korean traditionally using several kinds of vegetables, which is a good source of variety of nutrients and vitamins. There are many methods for making Jangachi. Generally soy sauce Jangachi is made through two steps. First, as a pretreatment, vegetables are soaked in salt water. Second, soaked vegetables are fermented in various ingredients like soy sauce, sugar, garlic, ginger and so on. This study was performed to observe changes in contents of chemical components and sensory evaluation of pretreated perilla leaf. Perilla leaf was soaked in water with different levels of salt concentration(2, 5 and 8 %) and soaking time(1, 3 and 5 days). The optimal level of salt and soaking time was determined with the results of sensory evaluation by response surface methodology and analysis of composition. The moisture contents decreased as the levels of salt and soaking time increased. The moisture content of untreated sample was 87.5 % and when soaked for 5 days in the water of 8 % salt concentration, it became 78.27 %. pH of Perilla leaf was high in high levels of salt concentration and short soaking time. Total acidity was so opposite to pH that was low in high levels of salt concentration and short soaking time. In the water of 8 % salt concentration, total acidity was 0.14 % when soaked for 1 day, 0.20 % for 3 days and 0.30 % for 5 days. Salt contents became greater as the soaking time increased. As the results of puncture test, soaked Perilla leaf's toughness increased as the levels of salt increased and soaking time decreased. Among the sensory attributes, greenness increased as the levels of salt concentration increased when soaked for more than 3 days. Saltiness and bitterness became greater as the levels of salt concentration increased. Perilla flavor decreased with the short soaking time. Off-flavor increased with the increased levels of soaking time and decreased salt concentration when soaked for more than 3 days. Toughness decreased as the levels of soaking time increased. Crispness increased with the increased levels of salt concentration. The condition of pretreated Perilla was optimum when it soaked for 42 hours in 4 % salt concentration.

Water and Salt Budgets for the Yellow Sea

  • Lee, Jae-Hak;An, Byoung-Woong;Bang, Inkweon;Hong, Gi-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.125-133
    • /
    • 2002
  • Water and salt budgets in the Yellow Sea and Bohai are analyzed based on the historical data and CTD data collected recently using box models. The amounts of volume transport and of water exchange across the boundary between the Yellow and East China Seas are estimated to be 2,330-2,840 $\textrm{km}^3$/yr and 109-133 $\textrm{km}^3$/yr, respectively, from the one-layer box model. Corresponding water residence time is 5-6 years. In the Bohai, water residence time is twice as long as that in the Yellow Sea, suggesting that the Yellow Sea and Bohai cannot be considered as a single system in the view of water and salt budgets. The results indicate that water and salt budgets in the Yellow Sea depend almost only on the water exchange between the Yellow and East China Seas. The computation with the coupled two-layer model shows that water residence time is slightly decreased to 4-5 years for the Yellow Sea. In order to reduce uncertainties for the budgeting results the amount of the discharge from the Changjiang that enters into the Yellow Sea, the vertical advection and vertical mixing fluxes across the layer interface have to be quantified. The decreasing trend of the annual Yellow River outflow is likely to result that water residence time is much longer than the current state, especially for the Bohai. The completion of the Three Gorges dam on the Changjiang may be change the water and salt budgets in the Yellow Sea. It is expected that cutting back the discharge from the Changjiang by 10% through the dam would increase water residence time by about 10%.

Studies on the Separation Performances of Chlorophenol Compounds from Water by Thin Film Composite Membranes

  • Yogesh, K.M. Popat;Ganguly, B.;Brahmbhatt, H.;Bhattacharya, A.
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.590-595
    • /
    • 2008
  • The pressure driven membrane process has been a breakthrough in the removal of pollutants from drinking water. These experiments examined the removal of chlorophenol compounds from water using low pressure membranes. The removal performance of the membranes was based primarily on size exclusion. Apart from size exclusion, the polarity and pKa of the compounds also influences the membrane performance. The molecular size and dipole moments of the respective molecules were calculated using a quantum chemical method. The rejection of pollutants also followed the same trend as salt rejection by the membranes.